marimari-r2r-mlsum / README.md
joheras's picture
update model card README.md
4be1376
|
raw
history blame
4.2 kB
metadata
tags:
  - simplification
  - generated_from_trainer
metrics:
  - rouge
model-index:
  - name: marimari-r2r-mlsum-clara-med
    results: []

marimari-r2r-mlsum-clara-med

This model is a fine-tuned version of IIC/marimari-r2r-mlsum on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 3.9276
  • Rouge1: 43.1543
  • Rouge2: 24.9453
  • Rougel: 37.4907
  • Rougelsum: 37.6959

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5.6e-05
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 30

Training results

Training Loss Epoch Step Validation Loss Rouge1 Rouge2 Rougel Rougelsum
No log 1.0 190 2.3405 42.5983 25.1109 37.6327 37.7257
No log 2.0 380 2.2954 41.9792 23.9766 36.3881 36.5226
1.976 3.0 570 2.4302 42.0317 23.9135 36.186 36.3812
1.976 4.0 760 2.7029 41.7418 23.7318 36.2048 36.3403
0.6481 5.0 950 2.9547 41.2054 22.9037 35.1364 35.3168
0.6481 6.0 1140 3.1709 41.0444 23.2019 35.7206 35.8829
0.6481 7.0 1330 3.2556 41.3295 22.6827 35.2777 35.4701
0.1485 8.0 1520 3.3117 41.068 22.965 35.5507 35.6491
0.1485 9.0 1710 3.4171 41.5945 23.6423 35.8899 36.0442
0.0725 10.0 1900 3.4981 41.1163 23.0651 35.6205 35.6596
0.0725 11.0 2090 3.5086 40.9784 22.9125 35.182 35.5205
0.0725 12.0 2280 3.5503 41.6038 23.3975 36.0071 36.2095
0.0425 13.0 2470 3.6113 42.0039 24.0294 36.4882 36.6313
0.0425 14.0 2660 3.6253 41.3012 23.1452 35.5444 35.761
0.0291 15.0 2850 3.6247 42.1477 24.3389 36.4346 36.6004
0.0291 16.0 3040 3.6683 42.6205 24.3544 36.776 36.9848
0.0291 17.0 3230 3.7544 41.9877 24.069 36.6296 36.9115
0.0166 18.0 3420 3.7562 41.8586 23.6088 36.271 36.4634
0.0166 19.0 3610 3.7687 43.2161 25.0204 37.5484 37.759
0.0088 20.0 3800 3.7907 42.8482 24.8476 37.1841 37.4456
0.0088 21.0 3990 3.8260 42.3613 24.3827 36.6921 36.8898
0.0088 22.0 4180 3.8367 42.6367 24.6803 37.0963 37.3301
0.0039 23.0 4370 3.8613 42.8326 25.0972 37.4584 37.6063
0.0039 24.0 4560 3.8716 43.043 24.7042 37.4917 37.6845
0.0028 25.0 4750 3.8881 42.9107 25.0261 37.3744 37.6019
0.0028 26.0 4940 3.9005 42.8922 24.8232 37.4217 37.5928
0.0028 27.0 5130 3.9054 43.1217 25.1892 37.6801 37.8118
0.0017 28.0 5320 3.9159 43.3466 25.1834 37.7026 37.9333
0.0017 29.0 5510 3.9240 43.1974 25.0535 37.6958 37.9008
0.0012 30.0 5700 3.9276 43.1543 24.9453 37.4907 37.6959

Framework versions

  • Transformers 4.25.1
  • Pytorch 1.13.0
  • Datasets 2.8.0
  • Tokenizers 0.12.1