SentenceTransformer based on sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2
This is a sentence-transformers model finetuned from sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2 on the sentence-transformers/quora-duplicates dataset. It maps sentences & paragraphs to a 384-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
Model Details
Model Description
- Model Type: Sentence Transformer
- Base model: sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2
- Maximum Sequence Length: 128 tokens
- Output Dimensionality: 384 tokens
- Similarity Function: Cosine Similarity
- Training Dataset:
- Language: en
Model Sources
- Documentation: Sentence Transformers Documentation
- Repository: Sentence Transformers on GitHub
- Hugging Face: Sentence Transformers on Hugging Face
Full Model Architecture
SentenceTransformer(
  (0): Transformer({'max_seq_length': 128, 'do_lower_case': False}) with Transformer model: BertModel 
  (1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
)
Usage
Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("DashReza7/paraphrase-multilingual-MiniLM-L12-v2_QuoraDuplicateDetection_FINETUNED")
# Run inference
sentences = [
    'Why do complementary angles have to be adjacent?',
    'Can two adjacent angles be complementary?',
    'How can I get rid of my bad habits?',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 384]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
Evaluation
Metrics
Binary Classification
- Evaluated with BinaryClassificationEvaluator
| Metric | Value | 
|---|---|
| cosine_accuracy | 0.8684 | 
| cosine_accuracy_threshold | 0.7981 | 
| cosine_f1 | 0.8292 | 
| cosine_f1_threshold | 0.7599 | 
| cosine_precision | 0.7747 | 
| cosine_recall | 0.8921 | 
| cosine_ap | 0.8822 | 
| dot_accuracy | 0.836 | 
| dot_accuracy_threshold | 17.1121 | 
| dot_f1 | 0.7914 | 
| dot_f1_threshold | 16.0833 | 
| dot_precision | 0.7294 | 
| dot_recall | 0.865 | 
| dot_ap | 0.8439 | 
| manhattan_accuracy | 0.8568 | 
| manhattan_accuracy_threshold | 46.9431 | 
| manhattan_f1 | 0.8144 | 
| manhattan_f1_threshold | 50.5148 | 
| manhattan_precision | 0.7656 | 
| manhattan_recall | 0.8698 | 
| manhattan_ap | 0.8636 | 
| euclidean_accuracy | 0.8569 | 
| euclidean_accuracy_threshold | 3.0017 | 
| euclidean_f1 | 0.8143 | 
| euclidean_f1_threshold | 3.2429 | 
| euclidean_precision | 0.7652 | 
| euclidean_recall | 0.8701 | 
| euclidean_ap | 0.8638 | 
| max_accuracy | 0.8684 | 
| max_accuracy_threshold | 46.9431 | 
| max_f1 | 0.8292 | 
| max_f1_threshold | 50.5148 | 
| max_precision | 0.7747 | 
| max_recall | 0.8921 | 
| max_ap | 0.8822 | 
Training Details
Training Dataset
sentence-transformers/quora-duplicates
- Dataset: sentence-transformers/quora-duplicates at 451a485
- Size: 323,432 training samples
- Columns: sentence1,sentence2, andlabel
- Approximate statistics based on the first 1000 samples:sentence1 sentence2 label type string string int details - min: 6 tokens
- mean: 16.39 tokens
- max: 80 tokens
 - min: 4 tokens
- mean: 16.2 tokens
- max: 71 tokens
 - 0: ~62.10%
- 1: ~37.90%
 
- Samples:sentence1 sentence2 label Which are the best compilers for C language (for Windows 10)?Which is the best open source C/C++ compiler for Windows?0How much does YouTube pay per 1000 views in India?How much does youtube pay per 1000 views?0What parts do I need to build my own PC?I want to build a new computer. What parts do I need?1
- Loss: OnlineContrastiveLoss
Evaluation Dataset
sentence-transformers/quora-duplicates
- Dataset: sentence-transformers/quora-duplicates at 451a485
- Size: 80,858 evaluation samples
- Columns: sentence1,sentence2, andlabel
- Approximate statistics based on the first 1000 samples:sentence1 sentence2 label type string string int details - min: 6 tokens
- mean: 16.48 tokens
- max: 79 tokens
 - min: 6 tokens
- mean: 16.76 tokens
- max: 101 tokens
 - 0: ~63.90%
- 1: ~36.10%
 
- Samples:sentence1 sentence2 label How many stories got busted on Quora while being anonymous?Can what I say on Quora anonymously be used against me legally?0What are innovative mechanical component designs?What is the Innovation design?0What is the best way to learn phrasal verbs?Why should I learn phrasal verbs?1
- Loss: OnlineContrastiveLoss
Training Hyperparameters
Non-Default Hyperparameters
- eval_strategy: steps
- per_device_train_batch_size: 256
- per_device_eval_batch_size: 256
- learning_rate: 2e-05
- num_train_epochs: 1
- warmup_ratio: 0.1
- fp16: True
All Hyperparameters
Click to expand
- overwrite_output_dir: False
- do_predict: False
- eval_strategy: steps
- prediction_loss_only: True
- per_device_train_batch_size: 256
- per_device_eval_batch_size: 256
- per_gpu_train_batch_size: None
- per_gpu_eval_batch_size: None
- gradient_accumulation_steps: 1
- eval_accumulation_steps: None
- learning_rate: 2e-05
- weight_decay: 0.0
- adam_beta1: 0.9
- adam_beta2: 0.999
- adam_epsilon: 1e-08
- max_grad_norm: 1.0
- num_train_epochs: 1
- max_steps: -1
- lr_scheduler_type: linear
- lr_scheduler_kwargs: {}
- warmup_ratio: 0.1
- warmup_steps: 0
- log_level: passive
- log_level_replica: warning
- log_on_each_node: True
- logging_nan_inf_filter: True
- save_safetensors: True
- save_on_each_node: False
- save_only_model: False
- restore_callback_states_from_checkpoint: False
- no_cuda: False
- use_cpu: False
- use_mps_device: False
- seed: 42
- data_seed: None
- jit_mode_eval: False
- use_ipex: False
- bf16: False
- fp16: True
- fp16_opt_level: O1
- half_precision_backend: auto
- bf16_full_eval: False
- fp16_full_eval: False
- tf32: None
- local_rank: 0
- ddp_backend: None
- tpu_num_cores: None
- tpu_metrics_debug: False
- debug: []
- dataloader_drop_last: False
- dataloader_num_workers: 0
- dataloader_prefetch_factor: None
- past_index: -1
- disable_tqdm: False
- remove_unused_columns: True
- label_names: None
- load_best_model_at_end: False
- ignore_data_skip: False
- fsdp: []
- fsdp_min_num_params: 0
- fsdp_config: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
- fsdp_transformer_layer_cls_to_wrap: None
- accelerator_config: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
- deepspeed: None
- label_smoothing_factor: 0.0
- optim: adamw_torch
- optim_args: None
- adafactor: False
- group_by_length: False
- length_column_name: length
- ddp_find_unused_parameters: None
- ddp_bucket_cap_mb: None
- ddp_broadcast_buffers: False
- dataloader_pin_memory: True
- dataloader_persistent_workers: False
- skip_memory_metrics: True
- use_legacy_prediction_loop: False
- push_to_hub: False
- resume_from_checkpoint: None
- hub_model_id: None
- hub_strategy: every_save
- hub_private_repo: False
- hub_always_push: False
- gradient_checkpointing: False
- gradient_checkpointing_kwargs: None
- include_inputs_for_metrics: False
- eval_do_concat_batches: True
- fp16_backend: auto
- push_to_hub_model_id: None
- push_to_hub_organization: None
- mp_parameters:
- auto_find_batch_size: False
- full_determinism: False
- torchdynamo: None
- ray_scope: last
- ddp_timeout: 1800
- torch_compile: False
- torch_compile_backend: None
- torch_compile_mode: None
- dispatch_batches: None
- split_batches: None
- include_tokens_per_second: False
- include_num_input_tokens_seen: False
- neftune_noise_alpha: None
- optim_target_modules: None
- batch_eval_metrics: False
- eval_on_start: False
- batch_sampler: batch_sampler
- multi_dataset_batch_sampler: proportional
Training Logs
| Epoch | Step | Training Loss | loss | max_ap | 
|---|---|---|---|---|
| 0.0791 | 100 | - | 8.0607 | 0.8164 | 
| 0.1582 | 200 | - | 7.3012 | 0.8445 | 
| 0.2373 | 300 | - | 6.9626 | 0.8582 | 
| 0.3165 | 400 | - | 6.7901 | 0.8639 | 
| 0.3956 | 500 | 7.5229 | 6.6498 | 0.8694 | 
| 0.4747 | 600 | - | 6.5315 | 0.8736 | 
| 0.5538 | 700 | - | 6.4686 | 0.8766 | 
| 0.6329 | 800 | - | 6.4027 | 0.8787 | 
| 0.7120 | 900 | - | 6.3108 | 0.8797 | 
| 0.7911 | 1000 | 6.4636 | 6.2862 | 0.8812 | 
| 0.8703 | 1100 | - | 6.2449 | 0.8818 | 
| 0.9494 | 1200 | - | 6.2344 | 0.8822 | 
Framework Versions
- Python: 3.10.12
- Sentence Transformers: 3.0.1
- Transformers: 4.42.4
- PyTorch: 2.3.1+cu121
- Accelerate: 0.32.1
- Datasets: 2.21.0
- Tokenizers: 0.19.1
Citation
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
    title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
    author = "Reimers, Nils and Gurevych, Iryna",
    booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
    month = "11",
    year = "2019",
    publisher = "Association for Computational Linguistics",
    url = "https://arxiv.org/abs/1908.10084",
}
- Downloads last month
- 1
Model tree for DashReza7/paraphrase-multilingual-MiniLM-L12-v2_QuoraDuplicateDetection_FINETUNED
Dataset used to train DashReza7/paraphrase-multilingual-MiniLM-L12-v2_QuoraDuplicateDetection_FINETUNED
Evaluation results
- Cosine Accuracy on Unknownself-reported0.868
- Cosine Accuracy Threshold on Unknownself-reported0.798
- Cosine F1 on Unknownself-reported0.829
- Cosine F1 Threshold on Unknownself-reported0.760
- Cosine Precision on Unknownself-reported0.775
- Cosine Recall on Unknownself-reported0.892
- Cosine Ap on Unknownself-reported0.882
- Dot Accuracy on Unknownself-reported0.836
- Dot Accuracy Threshold on Unknownself-reported17.112
- Dot F1 on Unknownself-reported0.791