metadata
base_model: sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2
datasets:
- sentence-transformers/quora-duplicates
language:
- en
library_name: sentence-transformers
metrics:
- cosine_accuracy
- cosine_accuracy_threshold
- cosine_f1
- cosine_f1_threshold
- cosine_precision
- cosine_recall
- cosine_ap
- dot_accuracy
- dot_accuracy_threshold
- dot_f1
- dot_f1_threshold
- dot_precision
- dot_recall
- dot_ap
- manhattan_accuracy
- manhattan_accuracy_threshold
- manhattan_f1
- manhattan_f1_threshold
- manhattan_precision
- manhattan_recall
- manhattan_ap
- euclidean_accuracy
- euclidean_accuracy_threshold
- euclidean_f1
- euclidean_f1_threshold
- euclidean_precision
- euclidean_recall
- euclidean_ap
- max_accuracy
- max_accuracy_threshold
- max_f1
- max_f1_threshold
- max_precision
- max_recall
- max_ap
pipeline_tag: sentence-similarity
tags:
- sentence-transformers
- sentence-similarity
- feature-extraction
- generated_from_trainer
- dataset_size:323432
- loss:OnlineContrastiveLoss
widget:
- source_sentence: >-
How do I have a successful career in animation industry with all distance
mode of education (from schooling)?
sentences:
- >-
The LINE app is blocked in China. I bought a VPN, but it's still not
working. Can someone help me?
- What is independent?
- How do I find all distance education schools in any city?
- source_sentence: How can I get the funding for my startup without revealing my idea?
sentences:
- How has demonetization affected big business people like Mukesh Ambani?
- How should I go about getting funding for my idea?
- What are the advantages and disadvantages of studying an MBBS in China?
- source_sentence: >-
I am an okay looking young women but I am always feeling ugly since I'm
not extremely beautiful. How can I stop those thoughts?
sentences:
- >-
Whenever I think about my failures in life, I always feel that I lack
some qualities. But which are those qualities, I am not able to find
out. How can I find which qualities I lack?
- What songs make you cry?
- What does histrionic personality disorder feel like physically to you?
- source_sentence: >-
What do you think of Prime Minister Narendra Modi's decision to introduce
new INR 500 and INR 2000 currency notes?
sentences:
- >-
What do you think of the decision by the Indian Government to replace
1000 notes with 2000 notes?
- How do you find volume from density and mass?
- What are the consequences of having a blood sugar level over 300?
- source_sentence: Why do complementary angles have to be adjacent?
sentences:
- What is an AEG airsoft gun?
- How can I get rid of my bad habits?
- Can two adjacent angles be complementary?
model-index:
- name: >-
SentenceTransformer based on
sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2
results:
- task:
type: binary-classification
name: Binary Classification
dataset:
name: Unknown
type: unknown
metrics:
- type: cosine_accuracy
value: 0.8683618194860125
name: Cosine Accuracy
- type: cosine_accuracy_threshold
value: 0.7981455326080322
name: Cosine Accuracy Threshold
- type: cosine_f1
value: 0.8292439905343131
name: Cosine F1
- type: cosine_f1_threshold
value: 0.7598952651023865
name: Cosine F1 Threshold
- type: cosine_precision
value: 0.7746589487768696
name: Cosine Precision
- type: cosine_recall
value: 0.8921046460992195
name: Cosine Recall
- type: cosine_ap
value: 0.8822291610822541
name: Cosine Ap
- type: dot_accuracy
value: 0.8359964382003018
name: Dot Accuracy
- type: dot_accuracy_threshold
value: 17.112058639526367
name: Dot Accuracy Threshold
- type: dot_f1
value: 0.7914425390403506
name: Dot F1
- type: dot_f1_threshold
value: 16.083341598510742
name: Dot F1 Threshold
- type: dot_precision
value: 0.7294350282485875
name: Dot Precision
- type: dot_recall
value: 0.8649716946370549
name: Dot Recall
- type: dot_ap
value: 0.8438654629805356
name: Dot Ap
- type: manhattan_accuracy
value: 0.8568230725469341
name: Manhattan Accuracy
- type: manhattan_accuracy_threshold
value: 46.94310760498047
name: Manhattan Accuracy Threshold
- type: manhattan_f1
value: 0.8144082547946494
name: Manhattan F1
- type: manhattan_f1_threshold
value: 50.51482391357422
name: Manhattan F1 Threshold
- type: manhattan_precision
value: 0.7656268427880646
name: Manhattan Precision
- type: manhattan_recall
value: 0.8698288279234918
name: Manhattan Recall
- type: manhattan_ap
value: 0.8636170591577621
name: Manhattan Ap
- type: euclidean_accuracy
value: 0.8568849093472507
name: Euclidean Accuracy
- type: euclidean_accuracy_threshold
value: 3.0017127990722656
name: Euclidean Accuracy Threshold
- type: euclidean_f1
value: 0.8143016129285076
name: Euclidean F1
- type: euclidean_f1_threshold
value: 3.2429399490356445
name: Euclidean F1 Threshold
- type: euclidean_precision
value: 0.7652309686542541
name: Euclidean Precision
- type: euclidean_recall
value: 0.8700968076910194
name: Euclidean Recall
- type: euclidean_ap
value: 0.8637642883474006
name: Euclidean Ap
- type: max_accuracy
value: 0.8683618194860125
name: Max Accuracy
- type: max_accuracy_threshold
value: 46.94310760498047
name: Max Accuracy Threshold
- type: max_f1
value: 0.8292439905343131
name: Max F1
- type: max_f1_threshold
value: 50.51482391357422
name: Max F1 Threshold
- type: max_precision
value: 0.7746589487768696
name: Max Precision
- type: max_recall
value: 0.8921046460992195
name: Max Recall
- type: max_ap
value: 0.8822291610822541
name: Max Ap
SentenceTransformer based on sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2
This is a sentence-transformers model finetuned from sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2 on the sentence-transformers/quora-duplicates dataset. It maps sentences & paragraphs to a 384-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
Model Details
Model Description
- Model Type: Sentence Transformer
- Base model: sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2
- Maximum Sequence Length: 128 tokens
- Output Dimensionality: 384 tokens
- Similarity Function: Cosine Similarity
- Training Dataset:
- Language: en
Model Sources
- Documentation: Sentence Transformers Documentation
- Repository: Sentence Transformers on GitHub
- Hugging Face: Sentence Transformers on Hugging Face
Full Model Architecture
SentenceTransformer(
(0): Transformer({'max_seq_length': 128, 'do_lower_case': False}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
)
Usage
Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("DashReza7/paraphrase-multilingual-MiniLM-L12-v2_QuoraDuplicateDetection_FINETUNED")
# Run inference
sentences = [
'Why do complementary angles have to be adjacent?',
'Can two adjacent angles be complementary?',
'How can I get rid of my bad habits?',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 384]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
Evaluation
Metrics
Binary Classification
- Evaluated with
BinaryClassificationEvaluator
| Metric | Value |
|---|---|
| cosine_accuracy | 0.8684 |
| cosine_accuracy_threshold | 0.7981 |
| cosine_f1 | 0.8292 |
| cosine_f1_threshold | 0.7599 |
| cosine_precision | 0.7747 |
| cosine_recall | 0.8921 |
| cosine_ap | 0.8822 |
| dot_accuracy | 0.836 |
| dot_accuracy_threshold | 17.1121 |
| dot_f1 | 0.7914 |
| dot_f1_threshold | 16.0833 |
| dot_precision | 0.7294 |
| dot_recall | 0.865 |
| dot_ap | 0.8439 |
| manhattan_accuracy | 0.8568 |
| manhattan_accuracy_threshold | 46.9431 |
| manhattan_f1 | 0.8144 |
| manhattan_f1_threshold | 50.5148 |
| manhattan_precision | 0.7656 |
| manhattan_recall | 0.8698 |
| manhattan_ap | 0.8636 |
| euclidean_accuracy | 0.8569 |
| euclidean_accuracy_threshold | 3.0017 |
| euclidean_f1 | 0.8143 |
| euclidean_f1_threshold | 3.2429 |
| euclidean_precision | 0.7652 |
| euclidean_recall | 0.8701 |
| euclidean_ap | 0.8638 |
| max_accuracy | 0.8684 |
| max_accuracy_threshold | 46.9431 |
| max_f1 | 0.8292 |
| max_f1_threshold | 50.5148 |
| max_precision | 0.7747 |
| max_recall | 0.8921 |
| max_ap | 0.8822 |
Training Details
Training Dataset
sentence-transformers/quora-duplicates
- Dataset: sentence-transformers/quora-duplicates at 451a485
- Size: 323,432 training samples
- Columns:
sentence1,sentence2, andlabel - Approximate statistics based on the first 1000 samples:
sentence1 sentence2 label type string string int details - min: 6 tokens
- mean: 16.39 tokens
- max: 80 tokens
- min: 4 tokens
- mean: 16.2 tokens
- max: 71 tokens
- 0: ~62.10%
- 1: ~37.90%
- Samples:
sentence1 sentence2 label Which are the best compilers for C language (for Windows 10)?Which is the best open source C/C++ compiler for Windows?0How much does YouTube pay per 1000 views in India?How much does youtube pay per 1000 views?0What parts do I need to build my own PC?I want to build a new computer. What parts do I need?1 - Loss:
OnlineContrastiveLoss
Evaluation Dataset
sentence-transformers/quora-duplicates
- Dataset: sentence-transformers/quora-duplicates at 451a485
- Size: 80,858 evaluation samples
- Columns:
sentence1,sentence2, andlabel - Approximate statistics based on the first 1000 samples:
sentence1 sentence2 label type string string int details - min: 6 tokens
- mean: 16.48 tokens
- max: 79 tokens
- min: 6 tokens
- mean: 16.76 tokens
- max: 101 tokens
- 0: ~63.90%
- 1: ~36.10%
- Samples:
sentence1 sentence2 label How many stories got busted on Quora while being anonymous?Can what I say on Quora anonymously be used against me legally?0What are innovative mechanical component designs?What is the Innovation design?0What is the best way to learn phrasal verbs?Why should I learn phrasal verbs?1 - Loss:
OnlineContrastiveLoss
Training Hyperparameters
Non-Default Hyperparameters
eval_strategy: stepsper_device_train_batch_size: 256per_device_eval_batch_size: 256learning_rate: 2e-05num_train_epochs: 1warmup_ratio: 0.1fp16: True
All Hyperparameters
Click to expand
overwrite_output_dir: Falsedo_predict: Falseeval_strategy: stepsprediction_loss_only: Trueper_device_train_batch_size: 256per_device_eval_batch_size: 256per_gpu_train_batch_size: Noneper_gpu_eval_batch_size: Nonegradient_accumulation_steps: 1eval_accumulation_steps: Nonelearning_rate: 2e-05weight_decay: 0.0adam_beta1: 0.9adam_beta2: 0.999adam_epsilon: 1e-08max_grad_norm: 1.0num_train_epochs: 1max_steps: -1lr_scheduler_type: linearlr_scheduler_kwargs: {}warmup_ratio: 0.1warmup_steps: 0log_level: passivelog_level_replica: warninglog_on_each_node: Truelogging_nan_inf_filter: Truesave_safetensors: Truesave_on_each_node: Falsesave_only_model: Falserestore_callback_states_from_checkpoint: Falseno_cuda: Falseuse_cpu: Falseuse_mps_device: Falseseed: 42data_seed: Nonejit_mode_eval: Falseuse_ipex: Falsebf16: Falsefp16: Truefp16_opt_level: O1half_precision_backend: autobf16_full_eval: Falsefp16_full_eval: Falsetf32: Nonelocal_rank: 0ddp_backend: Nonetpu_num_cores: Nonetpu_metrics_debug: Falsedebug: []dataloader_drop_last: Falsedataloader_num_workers: 0dataloader_prefetch_factor: Nonepast_index: -1disable_tqdm: Falseremove_unused_columns: Truelabel_names: Noneload_best_model_at_end: Falseignore_data_skip: Falsefsdp: []fsdp_min_num_params: 0fsdp_config: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}fsdp_transformer_layer_cls_to_wrap: Noneaccelerator_config: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}deepspeed: Nonelabel_smoothing_factor: 0.0optim: adamw_torchoptim_args: Noneadafactor: Falsegroup_by_length: Falselength_column_name: lengthddp_find_unused_parameters: Noneddp_bucket_cap_mb: Noneddp_broadcast_buffers: Falsedataloader_pin_memory: Truedataloader_persistent_workers: Falseskip_memory_metrics: Trueuse_legacy_prediction_loop: Falsepush_to_hub: Falseresume_from_checkpoint: Nonehub_model_id: Nonehub_strategy: every_savehub_private_repo: Falsehub_always_push: Falsegradient_checkpointing: Falsegradient_checkpointing_kwargs: Noneinclude_inputs_for_metrics: Falseeval_do_concat_batches: Truefp16_backend: autopush_to_hub_model_id: Nonepush_to_hub_organization: Nonemp_parameters:auto_find_batch_size: Falsefull_determinism: Falsetorchdynamo: Noneray_scope: lastddp_timeout: 1800torch_compile: Falsetorch_compile_backend: Nonetorch_compile_mode: Nonedispatch_batches: Nonesplit_batches: Noneinclude_tokens_per_second: Falseinclude_num_input_tokens_seen: Falseneftune_noise_alpha: Noneoptim_target_modules: Nonebatch_eval_metrics: Falseeval_on_start: Falsebatch_sampler: batch_samplermulti_dataset_batch_sampler: proportional
Training Logs
| Epoch | Step | Training Loss | loss | max_ap |
|---|---|---|---|---|
| 0.0791 | 100 | - | 8.0607 | 0.8164 |
| 0.1582 | 200 | - | 7.3012 | 0.8445 |
| 0.2373 | 300 | - | 6.9626 | 0.8582 |
| 0.3165 | 400 | - | 6.7901 | 0.8639 |
| 0.3956 | 500 | 7.5229 | 6.6498 | 0.8694 |
| 0.4747 | 600 | - | 6.5315 | 0.8736 |
| 0.5538 | 700 | - | 6.4686 | 0.8766 |
| 0.6329 | 800 | - | 6.4027 | 0.8787 |
| 0.7120 | 900 | - | 6.3108 | 0.8797 |
| 0.7911 | 1000 | 6.4636 | 6.2862 | 0.8812 |
| 0.8703 | 1100 | - | 6.2449 | 0.8818 |
| 0.9494 | 1200 | - | 6.2344 | 0.8822 |
Framework Versions
- Python: 3.10.12
- Sentence Transformers: 3.0.1
- Transformers: 4.42.4
- PyTorch: 2.3.1+cu121
- Accelerate: 0.32.1
- Datasets: 2.21.0
- Tokenizers: 0.19.1
Citation
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}