Sentiment_Analysis / README.md
DineshKumar1329's picture
Update README.md
212e319 verified
|
raw
history blame
2.83 kB
metadata
license: mit
language:
  - en
metrics:
  - accuracy
library_name: sklearn
pipeline_tag: text-classification
tags:
  - code

Model Training

The sentiment analysis model is trained using a Support Vector Machine (SVM) classifier with a linear kernel. The cleaned text data is transformed into a bag-of-words representation using the CountVectorizer. The trained model is saved as Sentiment_classifier_model.joblib, and the corresponding TF-IDF vectorizer is saved as vectorizer_model.joblib.

Usage :

from huggingface_hub import hf_hub_download import joblib from sklearn.preprocessing import LabelEncoder

model = joblib.load( hf_hub_download("DineshKumar1329/Sentiment_Analysis", "sklearn_model.joblib") )

tfidf_vectorizer = joblib.load('/content/vectorizer_model.joblib') # Replace with your path

def clean_text(text): return text.lower()

def predict_sentiment(user_input): """Predicts sentiment for a given user input.""" cleaned_text = clean_text(user_input) input_matrix = tfidf_vectorizer.transform([cleaned_text]) prediction = model.predict(input_matrix)[0]

if isinstance(model.classes_, LabelEncoder): prediction = model.classes_.inverse_transform([prediction])[0]

return prediction

user_input = input("Enter a sentence: ")

predicted_sentiment = predict_sentiment(user_input)

print(f"Predicted Sentiment: {predicted_sentiment}")

from transformers import AutoTokenizer, AutoModelForSequenceClassification from sklearn.preprocessing import LabelEncoder import joblib

def load_model_and_tokenizer(model_name="DineshKumar1329/Sentiment_Analysis"): """Loads the sentiment analysis model and tokenizer from Hugging Face Hub."""

# Replace with desired model name if using a different model
model = AutoModelForSequenceClassification.from_pretrained(model_name)
tokenizer = AutoTokenizer.from_pretrained(model_name)

return model, tokenizer

def clean_text(text): """Converts the input text to lowercase for case-insensitive processing.""" return text.lower()

def predict_sentiment(user_input, model, tokenizer): """Predicts sentiment for a given user input."""

cleaned_text = clean_text(user_input)
encoded_text = tokenizer(cleaned_text, return_tensors="pt")

with torch.no_grad():
    outputs = model(**encoded_text)
    logits = outputs.logits
    prediction = torch.argmax(logits, dim=-1).item()

if isinstance(model.config.label_list, LabelEncoder):
    prediction = model.config.label_list.inverse_transform([prediction])[0]

return prediction

if name == "main": model, tokenizer = load_model_and_tokenizer()

user_input = input("Enter a sentence: ")

predicted_sentiment = predict_sentiment(user_input, model, tokenizer)

print(f"Predicted Sentiment: {predicted_sentiment}")