Sentiment_Analysis / README.md
DineshKumar1329's picture
Update README.md
fbff6ba verified
|
raw
history blame
2.09 kB
metadata
license: mit
language:
  - en
metrics:
  - accuracy
library_name: sklearn
pipeline_tag: text-classification
tags:
  - code

Model Training

The sentiment analysis model is trained using a Support Vector Machine (SVM) classifier with a linear kernel. The cleaned text data is transformed into a bag-of-words representation using the CountVectorizer. The trained model is saved as Sentiment_classifier_model.joblib, and the corresponding TF-IDF vectorizer is saved as vectorizer_model.joblib.

Model Usage :

from huggingface_hub import hf_hub_download import joblib model = joblib.load( hf_hub_download("DineshKumar1329/Sentiment_Analysis", "sklearn_model.joblib") )

only load pickle files from sources you trust

read more about it here https://skops.readthedocs.io/en/stable/persistence.html

Load the TF-IDF vectorizer used during training

tfidf_vectorizer = joblib.load('/content/vectorizer_model.joblib') # Replace with your actual filename

Take user input

user_input = input("Enter a sentence: ")

Clean the user input

cleaned_input = clean_text(user_input)

Transform the cleaned text data using the TF-IDF vectorizer

input_matrix = tfidf_vectorizer.transform([cleaned_input])

Make prediction

prediction = model.predict(input_matrix)[0]

Display the prediction

print(f"Predicted Sentiment: {prediction}")

Create a DataFrame with the results

df_result = pd.DataFrame({'User_Input': [user_input], 'Predicted_Sentiment': [prediction]})

Save the DataFrame to an Excel file (append if the file already exists)

excel_filename = '/content/output_predictions.xlsx' # Replace with your desired filename try: # Load existing predictions from the Excel file df_existing = pd.read_excel(excel_filename)

# Append the new predictions to the existing DataFrame
df_combined = pd.concat([df_existing, df_result], ignore_index=True)

except FileNotFoundError: # If the file doesn't exist, create a new DataFrame df_combined = df_result

Save the combined DataFrame to the Excel file

df_combined.to_excel(excel_filename, index=False)