GaborMadarasz's picture
Update README.md
5a63802 verified
metadata
language:
  - hu
license: apache-2.0
tags:
  - sentence-transformers
  - cross-encoder
  - reranker
  - generated_from_trainer
  - dataset_size:32113
  - loss:BinaryCrossEntropyLoss
  - chemistry
base_model: GaborMadarasz/ModernBERT-base-hungarian
pipeline_tag: text-ranking
library_name: sentence-transformers
metrics:
  - map
  - mrr@10
  - ndcg@10
model-index:
  - name: ModernBERT-base trained on Chemistry
    results:
      - task:
          type: cross-encoder-reranking
          name: Cross Encoder Reranking
        dataset:
          name: chem dev
          type: chem-dev
        metrics:
          - type: map
            value: 0.4646
            name: Map
          - type: mrr@10
            value: 0.4614
            name: Mrr@10
          - type: ndcg@10
            value: 0.4928
            name: Ndcg@10

ModernBERT-base trained on Chemistry

This is a Cross Encoder model finetuned from GaborMadarasz/ModernBERT-base-hungarian using the sentence-transformers library. It computes scores for pairs of texts, which can be used for text reranking and semantic search.

Model Details

Model Description

Model Sources

Usage

Direct Usage (Sentence Transformers)

First install the Sentence Transformers library:

pip install -U sentence-transformers

Then you can load this model and run inference.

from sentence_transformers import CrossEncoder

# Download from the 🤗 Hub
model = CrossEncoder("GaborMadarasz/reranker-ModernBERT-base-hungarian")
# Get scores for pairs of texts
pairs = [
    ['Milyen halmazállapotú a klór szobahőmérsékleten?', 'Gáz'],
    ['Milyen halmazállapotú a klór szobahőmérsékleten?', 'Gáz.'],
    ['Mi az izoméria fogalma?', 'Azonos összegképletű, de eltérő szerkezetű és tulajdonságú anyagok. '],
    ['Melyik elektronhéjon található a hidrogénatom egyetlen elektronja?', 'Az első héjon.'],
    ['Milyen felhasználási területei vannak a szilíciumnak?', 'Ötvözőelemként, tranzisztorok, integrált áramkörök, fényelemek előállítására.'],
]
scores = model.predict(pairs)
print(scores.shape)
# (5,)

# Or rank different texts based on similarity to a single text
ranks = model.rank(
    'Milyen halmazállapotú a klór szobahőmérsékleten?',
    [
        'Gáz',
        'Gáz.',
        'Azonos összegképletű, de eltérő szerkezetű és tulajdonságú anyagok. ',
        'Az első héjon.',
        'Ötvözőelemként, tranzisztorok, integrált áramkörök, fényelemek előállítására.',
    ]
)
# [{'corpus_id': ..., 'score': ...}, {'corpus_id': ..., 'score': ...}, ...]

Evaluation

Metrics

Cross Encoder Reranking

Metric Value
map 0.4646 (+0.0929)
mrr@10 0.4614 (+0.0966)
ndcg@10 0.4928 (+0.0910)

Training Details

Training Dataset

Unnamed Dataset

  • Size: 32,113 training samples
  • Columns: query, answer, and label
  • Approximate statistics based on the first 1000 samples:
    query answer label
    type string string int
    details
    • min: 8 characters
    • mean: 52.3 characters
    • max: 159 characters
    • min: 1 characters
    • mean: 83.87 characters
    • max: 531 characters
    • 0: ~69.80%
    • 1: ~30.20%
  • Samples:
    query answer label
    Milyen halmazállapotú a klór szobahőmérsékleten? Gáz 1
    Milyen halmazállapotú a klór szobahőmérsékleten? Gáz. 1
    Mi az izoméria fogalma? Azonos összegképletű, de eltérő szerkezetű és tulajdonságú anyagok. 1
  • Loss: BinaryCrossEntropyLoss with these parameters:
    {
        "activation_fn": "torch.nn.modules.linear.Identity",
        "pos_weight": 5
    }
    

Training Hyperparameters

Non-Default Hyperparameters

  • eval_strategy: steps
  • per_device_train_batch_size: 2
  • per_device_eval_batch_size: 2
  • gradient_accumulation_steps: 8
  • learning_rate: 2e-05
  • warmup_ratio: 0.1
  • seed: 12
  • dataloader_num_workers: 2
  • load_best_model_at_end: True

All Hyperparameters

Click to expand
  • overwrite_output_dir: False
  • do_predict: False
  • eval_strategy: steps
  • prediction_loss_only: True
  • per_device_train_batch_size: 2
  • per_device_eval_batch_size: 2
  • per_gpu_train_batch_size: None
  • per_gpu_eval_batch_size: None
  • gradient_accumulation_steps: 8
  • eval_accumulation_steps: None
  • torch_empty_cache_steps: None
  • learning_rate: 2e-05
  • weight_decay: 0.0
  • adam_beta1: 0.9
  • adam_beta2: 0.999
  • adam_epsilon: 1e-08
  • max_grad_norm: 1.0
  • num_train_epochs: 3
  • max_steps: -1
  • lr_scheduler_type: linear
  • lr_scheduler_kwargs: {}
  • warmup_ratio: 0.1
  • warmup_steps: 0
  • log_level: passive
  • log_level_replica: warning
  • log_on_each_node: True
  • logging_nan_inf_filter: True
  • save_safetensors: True
  • save_on_each_node: False
  • save_only_model: False
  • restore_callback_states_from_checkpoint: False
  • no_cuda: False
  • use_cpu: False
  • use_mps_device: False
  • seed: 12
  • data_seed: None
  • jit_mode_eval: False
  • use_ipex: False
  • bf16: False
  • fp16: False
  • fp16_opt_level: O1
  • half_precision_backend: auto
  • bf16_full_eval: False
  • fp16_full_eval: False
  • tf32: None
  • local_rank: 0
  • ddp_backend: None
  • tpu_num_cores: None
  • tpu_metrics_debug: False
  • debug: []
  • dataloader_drop_last: False
  • dataloader_num_workers: 2
  • dataloader_prefetch_factor: None
  • past_index: -1
  • disable_tqdm: False
  • remove_unused_columns: True
  • label_names: None
  • load_best_model_at_end: True
  • ignore_data_skip: False
  • fsdp: []
  • fsdp_min_num_params: 0
  • fsdp_config: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
  • fsdp_transformer_layer_cls_to_wrap: None
  • accelerator_config: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
  • deepspeed: None
  • label_smoothing_factor: 0.0
  • optim: adamw_torch
  • optim_args: None
  • adafactor: False
  • group_by_length: False
  • length_column_name: length
  • ddp_find_unused_parameters: None
  • ddp_bucket_cap_mb: None
  • ddp_broadcast_buffers: False
  • dataloader_pin_memory: True
  • dataloader_persistent_workers: False
  • skip_memory_metrics: True
  • use_legacy_prediction_loop: False
  • push_to_hub: False
  • resume_from_checkpoint: None
  • hub_model_id: None
  • hub_strategy: every_save
  • hub_private_repo: None
  • hub_always_push: False
  • hub_revision: None
  • gradient_checkpointing: False
  • gradient_checkpointing_kwargs: None
  • include_inputs_for_metrics: False
  • include_for_metrics: []
  • eval_do_concat_batches: True
  • fp16_backend: auto
  • push_to_hub_model_id: None
  • push_to_hub_organization: None
  • mp_parameters:
  • auto_find_batch_size: False
  • full_determinism: False
  • torchdynamo: None
  • ray_scope: last
  • ddp_timeout: 1800
  • torch_compile: False
  • torch_compile_backend: None
  • torch_compile_mode: None
  • include_tokens_per_second: False
  • include_num_input_tokens_seen: False
  • neftune_noise_alpha: None
  • optim_target_modules: None
  • batch_eval_metrics: False
  • eval_on_start: False
  • use_liger_kernel: False
  • liger_kernel_config: None
  • eval_use_gather_object: False
  • average_tokens_across_devices: False
  • prompts: None
  • batch_sampler: batch_sampler
  • multi_dataset_batch_sampler: proportional
  • router_mapping: {}
  • learning_rate_mapping: {}

Training Logs

Epoch Step Training Loss chem-dev_ndcg@10
-1 -1 - 0.1188 (-0.2831)
0.0005 1 1.9222 -
0.0498 100 1.8084 -
0.0996 200 1.2947 0.2862 (-0.1157)
0.1495 300 1.1573 -
0.1993 400 1.17 0.3567 (-0.0452)
0.2491 500 1.0609 -
0.2989 600 1.01 0.3747 (-0.0272)
0.3488 700 0.9806 -
0.3986 800 0.9208 0.3963 (-0.0056)
0.4484 900 0.9022 -
0.4982 1000 0.8722 0.4106 (+0.0087)
0.5480 1100 0.9325 -
0.5979 1200 0.768 0.4316 (+0.0298)
0.6477 1300 0.8151 -
0.6975 1400 0.7569 0.4506 (+0.0487)
0.7473 1500 0.7216 -
0.7972 1600 0.7571 0.4643 (+0.0625)
0.8470 1700 0.6993 -
0.8968 1800 0.6709 0.4713 (+0.0694)
0.9466 1900 0.7021 -
0.9965 2000 0.7693 0.4805 (+0.0787)
1.0458 2100 0.5179 -
1.0957 2200 0.4932 0.4800 (+0.0781)
1.1455 2300 0.5568 -
1.1953 2400 0.4191 0.4821 (+0.0803)
1.2451 2500 0.4702 -
1.2949 2600 0.4126 0.4851 (+0.0833)
1.3448 2700 0.4744 -
1.3946 2800 0.4404 0.4907 (+0.0888)
1.4444 2900 0.4712 -
1.4942 3000 0.4382 0.4913 (+0.0894)
1.5441 3100 0.5049 -
1.5939 3200 0.4714 0.4886 (+0.0868)
1.6437 3300 0.3885 -
1.6935 3400 0.4361 0.4924 (+0.0906)
1.7434 3500 0.4207 -
1.7932 3600 0.4384 0.4928 (+0.0910)
1.8430 3700 0.4187 -
1.8928 3800 0.4271 0.4937 (+0.0919)
1.9426 3900 0.3581 -
1.9925 4000 0.3751 0.4910 (+0.0891)
2.0419 4100 0.2494 -
2.0917 4200 0.2045 0.4869 (+0.0850)
2.1415 4300 0.1532 -
2.1913 4400 0.1268 0.4838 (+0.0820)
2.2411 4500 0.2108 -
2.2910 4600 0.2292 0.4889 (+0.0870)
2.3408 4700 0.2154 -
2.3906 4800 0.1574 0.4921 (+0.0902)
2.4404 4900 0.1677 -
2.4903 5000 0.1596 0.4826 (+0.0807)
2.5401 5100 0.1456 -
2.5899 5200 0.2177 0.4867 (+0.0849)
2.6397 5300 0.1227 -
2.6895 5400 0.1638 0.4880 (+0.0862)
2.7394 5500 0.1192 -
2.7892 5600 0.2003 0.4848 (+0.0829)
2.8390 5700 0.2717 -
2.8888 5800 0.1546 0.4841 (+0.0822)
2.9387 5900 0.268 -
2.9885 6000 0.2253 0.4858 (+0.0840)
-1 -1 - 0.4928 (+0.0910)
  • The bold row denotes the saved checkpoint.

Framework Versions

  • Python: 3.10.12
  • Sentence Transformers: 5.0.0
  • Transformers: 4.53.2
  • PyTorch: 2.7.0+cpu
  • Accelerate: 1.6.0
  • Datasets: 3.2.0
  • Tokenizers: 0.21.2

Citation

BibTeX

Sentence Transformers

@inproceedings{reimers-2019-sentence-bert,
    title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
    author = "Reimers, Nils and Gurevych, Iryna",
    booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
    month = "11",
    year = "2019",
    publisher = "Association for Computational Linguistics",
    url = "https://arxiv.org/abs/1908.10084",
}