|
--- |
|
language: |
|
- hu |
|
license: apache-2.0 |
|
tags: |
|
- sentence-transformers |
|
- cross-encoder |
|
- reranker |
|
- generated_from_trainer |
|
- dataset_size:32113 |
|
- loss:BinaryCrossEntropyLoss |
|
- chemistry |
|
base_model: GaborMadarasz/ModernBERT-base-hungarian |
|
pipeline_tag: text-ranking |
|
library_name: sentence-transformers |
|
metrics: |
|
- map |
|
- mrr@10 |
|
- ndcg@10 |
|
model-index: |
|
- name: ModernBERT-base trained on Chemistry |
|
results: |
|
- task: |
|
type: cross-encoder-reranking |
|
name: Cross Encoder Reranking |
|
dataset: |
|
name: chem dev |
|
type: chem-dev |
|
metrics: |
|
- type: map |
|
value: 0.4646 |
|
name: Map |
|
- type: mrr@10 |
|
value: 0.4614 |
|
name: Mrr@10 |
|
- type: ndcg@10 |
|
value: 0.4928 |
|
name: Ndcg@10 |
|
--- |
|
|
|
# ModernBERT-base trained on Chemistry |
|
|
|
This is a [Cross Encoder](https://www.sbert.net/docs/cross_encoder/usage/usage.html) model finetuned from [GaborMadarasz/ModernBERT-base-hungarian](https://huggingface.co/GaborMadarasz/ModernBERT-base-hungarian) using the [sentence-transformers](https://www.SBERT.net) library. It computes scores for pairs of texts, which can be used for text reranking and semantic search. |
|
|
|
## Model Details |
|
|
|
### Model Description |
|
- **Model Type:** Cross Encoder |
|
- **Base model:** [GaborMadarasz/ModernBERT-base-hungarian](https://huggingface.co/GaborMadarasz/ModernBERT-base-hungarian) <!-- at revision 32d70514a6587e31e23ff8ea3d0dc98bc61e42e4 --> |
|
- **Maximum Sequence Length:** 8192 tokens |
|
- **Number of Output Labels:** 1 label |
|
<!-- - **Training Dataset:** Unknown --> |
|
- **Language:** hu |
|
- **License:** apache-2.0 |
|
|
|
### Model Sources |
|
|
|
- **Documentation:** [Sentence Transformers Documentation](https://sbert.net) |
|
- **Documentation:** [Cross Encoder Documentation](https://www.sbert.net/docs/cross_encoder/usage/usage.html) |
|
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers) |
|
- **Hugging Face:** [Cross Encoders on Hugging Face](https://huggingface.co/models?library=sentence-transformers&other=cross-encoder) |
|
|
|
## Usage |
|
|
|
### Direct Usage (Sentence Transformers) |
|
|
|
First install the Sentence Transformers library: |
|
|
|
```bash |
|
pip install -U sentence-transformers |
|
``` |
|
|
|
Then you can load this model and run inference. |
|
```python |
|
from sentence_transformers import CrossEncoder |
|
|
|
# Download from the 🤗 Hub |
|
model = CrossEncoder("GaborMadarasz/reranker-ModernBERT-base-hungarian") |
|
# Get scores for pairs of texts |
|
pairs = [ |
|
['Milyen halmazállapotú a klór szobahőmérsékleten?', 'Gáz'], |
|
['Milyen halmazállapotú a klór szobahőmérsékleten?', 'Gáz.'], |
|
['Mi az izoméria fogalma?', 'Azonos összegképletű, de eltérő szerkezetű és tulajdonságú anyagok. '], |
|
['Melyik elektronhéjon található a hidrogénatom egyetlen elektronja?', 'Az első héjon.'], |
|
['Milyen felhasználási területei vannak a szilíciumnak?', 'Ötvözőelemként, tranzisztorok, integrált áramkörök, fényelemek előállítására.'], |
|
] |
|
scores = model.predict(pairs) |
|
print(scores.shape) |
|
# (5,) |
|
|
|
# Or rank different texts based on similarity to a single text |
|
ranks = model.rank( |
|
'Milyen halmazállapotú a klór szobahőmérsékleten?', |
|
[ |
|
'Gáz', |
|
'Gáz.', |
|
'Azonos összegképletű, de eltérő szerkezetű és tulajdonságú anyagok. ', |
|
'Az első héjon.', |
|
'Ötvözőelemként, tranzisztorok, integrált áramkörök, fényelemek előállítására.', |
|
] |
|
) |
|
# [{'corpus_id': ..., 'score': ...}, {'corpus_id': ..., 'score': ...}, ...] |
|
``` |
|
|
|
<!-- |
|
### Direct Usage (Transformers) |
|
|
|
<details><summary>Click to see the direct usage in Transformers</summary> |
|
|
|
</details> |
|
--> |
|
|
|
<!-- |
|
### Downstream Usage (Sentence Transformers) |
|
|
|
You can finetune this model on your own dataset. |
|
|
|
<details><summary>Click to expand</summary> |
|
|
|
</details> |
|
--> |
|
|
|
<!-- |
|
### Out-of-Scope Use |
|
|
|
*List how the model may foreseeably be misused and address what users ought not to do with the model.* |
|
--> |
|
|
|
## Evaluation |
|
|
|
### Metrics |
|
|
|
#### Cross Encoder Reranking |
|
|
|
* Dataset: `chem-dev` |
|
* Evaluated with [<code>CrossEncoderRerankingEvaluator</code>](https://sbert.net/docs/package_reference/cross_encoder/evaluation.html#sentence_transformers.cross_encoder.evaluation.CrossEncoderRerankingEvaluator) with these parameters: |
|
```json |
|
{ |
|
"at_k": 10, |
|
"always_rerank_positives": false |
|
} |
|
``` |
|
|
|
| Metric | Value | |
|
|:------------|:---------------------| |
|
| map | 0.4646 (+0.0929) | |
|
| mrr@10 | 0.4614 (+0.0966) | |
|
| **ndcg@10** | **0.4928 (+0.0910)** | |
|
|
|
<!-- |
|
## Bias, Risks and Limitations |
|
|
|
*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.* |
|
--> |
|
|
|
<!-- |
|
### Recommendations |
|
|
|
*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.* |
|
--> |
|
|
|
## Training Details |
|
|
|
### Training Dataset |
|
|
|
#### Unnamed Dataset |
|
|
|
* Size: 32,113 training samples |
|
* Columns: <code>query</code>, <code>answer</code>, and <code>label</code> |
|
* Approximate statistics based on the first 1000 samples: |
|
| | query | answer | label | |
|
|:--------|:----------------------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------------------|:------------------------------------------------| |
|
| type | string | string | int | |
|
| details | <ul><li>min: 8 characters</li><li>mean: 52.3 characters</li><li>max: 159 characters</li></ul> | <ul><li>min: 1 characters</li><li>mean: 83.87 characters</li><li>max: 531 characters</li></ul> | <ul><li>0: ~69.80%</li><li>1: ~30.20%</li></ul> | |
|
* Samples: |
|
| query | answer | label | |
|
|:--------------------------------------------------------------|:----------------------------------------------------------------------------------|:---------------| |
|
| <code>Milyen halmazállapotú a klór szobahőmérsékleten?</code> | <code>Gáz</code> | <code>1</code> | |
|
| <code>Milyen halmazállapotú a klór szobahőmérsékleten?</code> | <code>Gáz.</code> | <code>1</code> | |
|
| <code>Mi az izoméria fogalma?</code> | <code>Azonos összegképletű, de eltérő szerkezetű és tulajdonságú anyagok. </code> | <code>1</code> | |
|
* Loss: [<code>BinaryCrossEntropyLoss</code>](https://sbert.net/docs/package_reference/cross_encoder/losses.html#binarycrossentropyloss) with these parameters: |
|
```json |
|
{ |
|
"activation_fn": "torch.nn.modules.linear.Identity", |
|
"pos_weight": 5 |
|
} |
|
``` |
|
|
|
### Training Hyperparameters |
|
#### Non-Default Hyperparameters |
|
|
|
- `eval_strategy`: steps |
|
- `per_device_train_batch_size`: 2 |
|
- `per_device_eval_batch_size`: 2 |
|
- `gradient_accumulation_steps`: 8 |
|
- `learning_rate`: 2e-05 |
|
- `warmup_ratio`: 0.1 |
|
- `seed`: 12 |
|
- `dataloader_num_workers`: 2 |
|
- `load_best_model_at_end`: True |
|
|
|
#### All Hyperparameters |
|
<details><summary>Click to expand</summary> |
|
|
|
- `overwrite_output_dir`: False |
|
- `do_predict`: False |
|
- `eval_strategy`: steps |
|
- `prediction_loss_only`: True |
|
- `per_device_train_batch_size`: 2 |
|
- `per_device_eval_batch_size`: 2 |
|
- `per_gpu_train_batch_size`: None |
|
- `per_gpu_eval_batch_size`: None |
|
- `gradient_accumulation_steps`: 8 |
|
- `eval_accumulation_steps`: None |
|
- `torch_empty_cache_steps`: None |
|
- `learning_rate`: 2e-05 |
|
- `weight_decay`: 0.0 |
|
- `adam_beta1`: 0.9 |
|
- `adam_beta2`: 0.999 |
|
- `adam_epsilon`: 1e-08 |
|
- `max_grad_norm`: 1.0 |
|
- `num_train_epochs`: 3 |
|
- `max_steps`: -1 |
|
- `lr_scheduler_type`: linear |
|
- `lr_scheduler_kwargs`: {} |
|
- `warmup_ratio`: 0.1 |
|
- `warmup_steps`: 0 |
|
- `log_level`: passive |
|
- `log_level_replica`: warning |
|
- `log_on_each_node`: True |
|
- `logging_nan_inf_filter`: True |
|
- `save_safetensors`: True |
|
- `save_on_each_node`: False |
|
- `save_only_model`: False |
|
- `restore_callback_states_from_checkpoint`: False |
|
- `no_cuda`: False |
|
- `use_cpu`: False |
|
- `use_mps_device`: False |
|
- `seed`: 12 |
|
- `data_seed`: None |
|
- `jit_mode_eval`: False |
|
- `use_ipex`: False |
|
- `bf16`: False |
|
- `fp16`: False |
|
- `fp16_opt_level`: O1 |
|
- `half_precision_backend`: auto |
|
- `bf16_full_eval`: False |
|
- `fp16_full_eval`: False |
|
- `tf32`: None |
|
- `local_rank`: 0 |
|
- `ddp_backend`: None |
|
- `tpu_num_cores`: None |
|
- `tpu_metrics_debug`: False |
|
- `debug`: [] |
|
- `dataloader_drop_last`: False |
|
- `dataloader_num_workers`: 2 |
|
- `dataloader_prefetch_factor`: None |
|
- `past_index`: -1 |
|
- `disable_tqdm`: False |
|
- `remove_unused_columns`: True |
|
- `label_names`: None |
|
- `load_best_model_at_end`: True |
|
- `ignore_data_skip`: False |
|
- `fsdp`: [] |
|
- `fsdp_min_num_params`: 0 |
|
- `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False} |
|
- `fsdp_transformer_layer_cls_to_wrap`: None |
|
- `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None} |
|
- `deepspeed`: None |
|
- `label_smoothing_factor`: 0.0 |
|
- `optim`: adamw_torch |
|
- `optim_args`: None |
|
- `adafactor`: False |
|
- `group_by_length`: False |
|
- `length_column_name`: length |
|
- `ddp_find_unused_parameters`: None |
|
- `ddp_bucket_cap_mb`: None |
|
- `ddp_broadcast_buffers`: False |
|
- `dataloader_pin_memory`: True |
|
- `dataloader_persistent_workers`: False |
|
- `skip_memory_metrics`: True |
|
- `use_legacy_prediction_loop`: False |
|
- `push_to_hub`: False |
|
- `resume_from_checkpoint`: None |
|
- `hub_model_id`: None |
|
- `hub_strategy`: every_save |
|
- `hub_private_repo`: None |
|
- `hub_always_push`: False |
|
- `hub_revision`: None |
|
- `gradient_checkpointing`: False |
|
- `gradient_checkpointing_kwargs`: None |
|
- `include_inputs_for_metrics`: False |
|
- `include_for_metrics`: [] |
|
- `eval_do_concat_batches`: True |
|
- `fp16_backend`: auto |
|
- `push_to_hub_model_id`: None |
|
- `push_to_hub_organization`: None |
|
- `mp_parameters`: |
|
- `auto_find_batch_size`: False |
|
- `full_determinism`: False |
|
- `torchdynamo`: None |
|
- `ray_scope`: last |
|
- `ddp_timeout`: 1800 |
|
- `torch_compile`: False |
|
- `torch_compile_backend`: None |
|
- `torch_compile_mode`: None |
|
- `include_tokens_per_second`: False |
|
- `include_num_input_tokens_seen`: False |
|
- `neftune_noise_alpha`: None |
|
- `optim_target_modules`: None |
|
- `batch_eval_metrics`: False |
|
- `eval_on_start`: False |
|
- `use_liger_kernel`: False |
|
- `liger_kernel_config`: None |
|
- `eval_use_gather_object`: False |
|
- `average_tokens_across_devices`: False |
|
- `prompts`: None |
|
- `batch_sampler`: batch_sampler |
|
- `multi_dataset_batch_sampler`: proportional |
|
- `router_mapping`: {} |
|
- `learning_rate_mapping`: {} |
|
|
|
</details> |
|
|
|
### Training Logs |
|
| Epoch | Step | Training Loss | chem-dev_ndcg@10 | |
|
|:----------:|:--------:|:-------------:|:--------------------:| |
|
| -1 | -1 | - | 0.1188 (-0.2831) | |
|
| 0.0005 | 1 | 1.9222 | - | |
|
| 0.0498 | 100 | 1.8084 | - | |
|
| 0.0996 | 200 | 1.2947 | 0.2862 (-0.1157) | |
|
| 0.1495 | 300 | 1.1573 | - | |
|
| 0.1993 | 400 | 1.17 | 0.3567 (-0.0452) | |
|
| 0.2491 | 500 | 1.0609 | - | |
|
| 0.2989 | 600 | 1.01 | 0.3747 (-0.0272) | |
|
| 0.3488 | 700 | 0.9806 | - | |
|
| 0.3986 | 800 | 0.9208 | 0.3963 (-0.0056) | |
|
| 0.4484 | 900 | 0.9022 | - | |
|
| 0.4982 | 1000 | 0.8722 | 0.4106 (+0.0087) | |
|
| 0.5480 | 1100 | 0.9325 | - | |
|
| 0.5979 | 1200 | 0.768 | 0.4316 (+0.0298) | |
|
| 0.6477 | 1300 | 0.8151 | - | |
|
| 0.6975 | 1400 | 0.7569 | 0.4506 (+0.0487) | |
|
| 0.7473 | 1500 | 0.7216 | - | |
|
| 0.7972 | 1600 | 0.7571 | 0.4643 (+0.0625) | |
|
| 0.8470 | 1700 | 0.6993 | - | |
|
| 0.8968 | 1800 | 0.6709 | 0.4713 (+0.0694) | |
|
| 0.9466 | 1900 | 0.7021 | - | |
|
| 0.9965 | 2000 | 0.7693 | 0.4805 (+0.0787) | |
|
| 1.0458 | 2100 | 0.5179 | - | |
|
| 1.0957 | 2200 | 0.4932 | 0.4800 (+0.0781) | |
|
| 1.1455 | 2300 | 0.5568 | - | |
|
| 1.1953 | 2400 | 0.4191 | 0.4821 (+0.0803) | |
|
| 1.2451 | 2500 | 0.4702 | - | |
|
| 1.2949 | 2600 | 0.4126 | 0.4851 (+0.0833) | |
|
| 1.3448 | 2700 | 0.4744 | - | |
|
| 1.3946 | 2800 | 0.4404 | 0.4907 (+0.0888) | |
|
| 1.4444 | 2900 | 0.4712 | - | |
|
| 1.4942 | 3000 | 0.4382 | 0.4913 (+0.0894) | |
|
| 1.5441 | 3100 | 0.5049 | - | |
|
| 1.5939 | 3200 | 0.4714 | 0.4886 (+0.0868) | |
|
| 1.6437 | 3300 | 0.3885 | - | |
|
| 1.6935 | 3400 | 0.4361 | 0.4924 (+0.0906) | |
|
| 1.7434 | 3500 | 0.4207 | - | |
|
| **1.7932** | **3600** | **0.4384** | **0.4928 (+0.0910)** | |
|
| 1.8430 | 3700 | 0.4187 | - | |
|
| 1.8928 | 3800 | 0.4271 | 0.4937 (+0.0919) | |
|
| 1.9426 | 3900 | 0.3581 | - | |
|
| 1.9925 | 4000 | 0.3751 | 0.4910 (+0.0891) | |
|
| 2.0419 | 4100 | 0.2494 | - | |
|
| 2.0917 | 4200 | 0.2045 | 0.4869 (+0.0850) | |
|
| 2.1415 | 4300 | 0.1532 | - | |
|
| 2.1913 | 4400 | 0.1268 | 0.4838 (+0.0820) | |
|
| 2.2411 | 4500 | 0.2108 | - | |
|
| 2.2910 | 4600 | 0.2292 | 0.4889 (+0.0870) | |
|
| 2.3408 | 4700 | 0.2154 | - | |
|
| 2.3906 | 4800 | 0.1574 | 0.4921 (+0.0902) | |
|
| 2.4404 | 4900 | 0.1677 | - | |
|
| 2.4903 | 5000 | 0.1596 | 0.4826 (+0.0807) | |
|
| 2.5401 | 5100 | 0.1456 | - | |
|
| 2.5899 | 5200 | 0.2177 | 0.4867 (+0.0849) | |
|
| 2.6397 | 5300 | 0.1227 | - | |
|
| 2.6895 | 5400 | 0.1638 | 0.4880 (+0.0862) | |
|
| 2.7394 | 5500 | 0.1192 | - | |
|
| 2.7892 | 5600 | 0.2003 | 0.4848 (+0.0829) | |
|
| 2.8390 | 5700 | 0.2717 | - | |
|
| 2.8888 | 5800 | 0.1546 | 0.4841 (+0.0822) | |
|
| 2.9387 | 5900 | 0.268 | - | |
|
| 2.9885 | 6000 | 0.2253 | 0.4858 (+0.0840) | |
|
| -1 | -1 | - | 0.4928 (+0.0910) | |
|
|
|
* The bold row denotes the saved checkpoint. |
|
|
|
### Framework Versions |
|
- Python: 3.10.12 |
|
- Sentence Transformers: 5.0.0 |
|
- Transformers: 4.53.2 |
|
- PyTorch: 2.7.0+cpu |
|
- Accelerate: 1.6.0 |
|
- Datasets: 3.2.0 |
|
- Tokenizers: 0.21.2 |
|
|
|
## Citation |
|
|
|
### BibTeX |
|
|
|
#### Sentence Transformers |
|
```bibtex |
|
@inproceedings{reimers-2019-sentence-bert, |
|
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks", |
|
author = "Reimers, Nils and Gurevych, Iryna", |
|
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing", |
|
month = "11", |
|
year = "2019", |
|
publisher = "Association for Computational Linguistics", |
|
url = "https://arxiv.org/abs/1908.10084", |
|
} |
|
``` |
|
|
|
<!-- |
|
## Glossary |
|
|
|
*Clearly define terms in order to be accessible across audiences.* |
|
--> |
|
|
|
<!-- |
|
## Model Card Authors |
|
|
|
*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.* |
|
--> |
|
|
|
<!-- |
|
## Model Card Contact |
|
|
|
*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.* |
|
--> |