GaborMadarasz's picture
Update README.md
5a63802 verified
---
language:
- hu
license: apache-2.0
tags:
- sentence-transformers
- cross-encoder
- reranker
- generated_from_trainer
- dataset_size:32113
- loss:BinaryCrossEntropyLoss
- chemistry
base_model: GaborMadarasz/ModernBERT-base-hungarian
pipeline_tag: text-ranking
library_name: sentence-transformers
metrics:
- map
- mrr@10
- ndcg@10
model-index:
- name: ModernBERT-base trained on Chemistry
results:
- task:
type: cross-encoder-reranking
name: Cross Encoder Reranking
dataset:
name: chem dev
type: chem-dev
metrics:
- type: map
value: 0.4646
name: Map
- type: mrr@10
value: 0.4614
name: Mrr@10
- type: ndcg@10
value: 0.4928
name: Ndcg@10
---
# ModernBERT-base trained on Chemistry
This is a [Cross Encoder](https://www.sbert.net/docs/cross_encoder/usage/usage.html) model finetuned from [GaborMadarasz/ModernBERT-base-hungarian](https://huggingface.co/GaborMadarasz/ModernBERT-base-hungarian) using the [sentence-transformers](https://www.SBERT.net) library. It computes scores for pairs of texts, which can be used for text reranking and semantic search.
## Model Details
### Model Description
- **Model Type:** Cross Encoder
- **Base model:** [GaborMadarasz/ModernBERT-base-hungarian](https://huggingface.co/GaborMadarasz/ModernBERT-base-hungarian) <!-- at revision 32d70514a6587e31e23ff8ea3d0dc98bc61e42e4 -->
- **Maximum Sequence Length:** 8192 tokens
- **Number of Output Labels:** 1 label
<!-- - **Training Dataset:** Unknown -->
- **Language:** hu
- **License:** apache-2.0
### Model Sources
- **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
- **Documentation:** [Cross Encoder Documentation](https://www.sbert.net/docs/cross_encoder/usage/usage.html)
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
- **Hugging Face:** [Cross Encoders on Hugging Face](https://huggingface.co/models?library=sentence-transformers&other=cross-encoder)
## Usage
### Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
```bash
pip install -U sentence-transformers
```
Then you can load this model and run inference.
```python
from sentence_transformers import CrossEncoder
# Download from the 🤗 Hub
model = CrossEncoder("GaborMadarasz/reranker-ModernBERT-base-hungarian")
# Get scores for pairs of texts
pairs = [
['Milyen halmazállapotú a klór szobahőmérsékleten?', 'Gáz'],
['Milyen halmazállapotú a klór szobahőmérsékleten?', 'Gáz.'],
['Mi az izoméria fogalma?', 'Azonos összegképletű, de eltérő szerkezetű és tulajdonságú anyagok. '],
['Melyik elektronhéjon található a hidrogénatom egyetlen elektronja?', 'Az első héjon.'],
['Milyen felhasználási területei vannak a szilíciumnak?', 'Ötvözőelemként, tranzisztorok, integrált áramkörök, fényelemek előállítására.'],
]
scores = model.predict(pairs)
print(scores.shape)
# (5,)
# Or rank different texts based on similarity to a single text
ranks = model.rank(
'Milyen halmazállapotú a klór szobahőmérsékleten?',
[
'Gáz',
'Gáz.',
'Azonos összegképletű, de eltérő szerkezetű és tulajdonságú anyagok. ',
'Az első héjon.',
'Ötvözőelemként, tranzisztorok, integrált áramkörök, fényelemek előállítására.',
]
)
# [{'corpus_id': ..., 'score': ...}, {'corpus_id': ..., 'score': ...}, ...]
```
<!--
### Direct Usage (Transformers)
<details><summary>Click to see the direct usage in Transformers</summary>
</details>
-->
<!--
### Downstream Usage (Sentence Transformers)
You can finetune this model on your own dataset.
<details><summary>Click to expand</summary>
</details>
-->
<!--
### Out-of-Scope Use
*List how the model may foreseeably be misused and address what users ought not to do with the model.*
-->
## Evaluation
### Metrics
#### Cross Encoder Reranking
* Dataset: `chem-dev`
* Evaluated with [<code>CrossEncoderRerankingEvaluator</code>](https://sbert.net/docs/package_reference/cross_encoder/evaluation.html#sentence_transformers.cross_encoder.evaluation.CrossEncoderRerankingEvaluator) with these parameters:
```json
{
"at_k": 10,
"always_rerank_positives": false
}
```
| Metric | Value |
|:------------|:---------------------|
| map | 0.4646 (+0.0929) |
| mrr@10 | 0.4614 (+0.0966) |
| **ndcg@10** | **0.4928 (+0.0910)** |
<!--
## Bias, Risks and Limitations
*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
-->
<!--
### Recommendations
*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
-->
## Training Details
### Training Dataset
#### Unnamed Dataset
* Size: 32,113 training samples
* Columns: <code>query</code>, <code>answer</code>, and <code>label</code>
* Approximate statistics based on the first 1000 samples:
| | query | answer | label |
|:--------|:----------------------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------------------|:------------------------------------------------|
| type | string | string | int |
| details | <ul><li>min: 8 characters</li><li>mean: 52.3 characters</li><li>max: 159 characters</li></ul> | <ul><li>min: 1 characters</li><li>mean: 83.87 characters</li><li>max: 531 characters</li></ul> | <ul><li>0: ~69.80%</li><li>1: ~30.20%</li></ul> |
* Samples:
| query | answer | label |
|:--------------------------------------------------------------|:----------------------------------------------------------------------------------|:---------------|
| <code>Milyen halmazállapotú a klór szobahőmérsékleten?</code> | <code>Gáz</code> | <code>1</code> |
| <code>Milyen halmazállapotú a klór szobahőmérsékleten?</code> | <code>Gáz.</code> | <code>1</code> |
| <code>Mi az izoméria fogalma?</code> | <code>Azonos összegképletű, de eltérő szerkezetű és tulajdonságú anyagok. </code> | <code>1</code> |
* Loss: [<code>BinaryCrossEntropyLoss</code>](https://sbert.net/docs/package_reference/cross_encoder/losses.html#binarycrossentropyloss) with these parameters:
```json
{
"activation_fn": "torch.nn.modules.linear.Identity",
"pos_weight": 5
}
```
### Training Hyperparameters
#### Non-Default Hyperparameters
- `eval_strategy`: steps
- `per_device_train_batch_size`: 2
- `per_device_eval_batch_size`: 2
- `gradient_accumulation_steps`: 8
- `learning_rate`: 2e-05
- `warmup_ratio`: 0.1
- `seed`: 12
- `dataloader_num_workers`: 2
- `load_best_model_at_end`: True
#### All Hyperparameters
<details><summary>Click to expand</summary>
- `overwrite_output_dir`: False
- `do_predict`: False
- `eval_strategy`: steps
- `prediction_loss_only`: True
- `per_device_train_batch_size`: 2
- `per_device_eval_batch_size`: 2
- `per_gpu_train_batch_size`: None
- `per_gpu_eval_batch_size`: None
- `gradient_accumulation_steps`: 8
- `eval_accumulation_steps`: None
- `torch_empty_cache_steps`: None
- `learning_rate`: 2e-05
- `weight_decay`: 0.0
- `adam_beta1`: 0.9
- `adam_beta2`: 0.999
- `adam_epsilon`: 1e-08
- `max_grad_norm`: 1.0
- `num_train_epochs`: 3
- `max_steps`: -1
- `lr_scheduler_type`: linear
- `lr_scheduler_kwargs`: {}
- `warmup_ratio`: 0.1
- `warmup_steps`: 0
- `log_level`: passive
- `log_level_replica`: warning
- `log_on_each_node`: True
- `logging_nan_inf_filter`: True
- `save_safetensors`: True
- `save_on_each_node`: False
- `save_only_model`: False
- `restore_callback_states_from_checkpoint`: False
- `no_cuda`: False
- `use_cpu`: False
- `use_mps_device`: False
- `seed`: 12
- `data_seed`: None
- `jit_mode_eval`: False
- `use_ipex`: False
- `bf16`: False
- `fp16`: False
- `fp16_opt_level`: O1
- `half_precision_backend`: auto
- `bf16_full_eval`: False
- `fp16_full_eval`: False
- `tf32`: None
- `local_rank`: 0
- `ddp_backend`: None
- `tpu_num_cores`: None
- `tpu_metrics_debug`: False
- `debug`: []
- `dataloader_drop_last`: False
- `dataloader_num_workers`: 2
- `dataloader_prefetch_factor`: None
- `past_index`: -1
- `disable_tqdm`: False
- `remove_unused_columns`: True
- `label_names`: None
- `load_best_model_at_end`: True
- `ignore_data_skip`: False
- `fsdp`: []
- `fsdp_min_num_params`: 0
- `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
- `fsdp_transformer_layer_cls_to_wrap`: None
- `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
- `deepspeed`: None
- `label_smoothing_factor`: 0.0
- `optim`: adamw_torch
- `optim_args`: None
- `adafactor`: False
- `group_by_length`: False
- `length_column_name`: length
- `ddp_find_unused_parameters`: None
- `ddp_bucket_cap_mb`: None
- `ddp_broadcast_buffers`: False
- `dataloader_pin_memory`: True
- `dataloader_persistent_workers`: False
- `skip_memory_metrics`: True
- `use_legacy_prediction_loop`: False
- `push_to_hub`: False
- `resume_from_checkpoint`: None
- `hub_model_id`: None
- `hub_strategy`: every_save
- `hub_private_repo`: None
- `hub_always_push`: False
- `hub_revision`: None
- `gradient_checkpointing`: False
- `gradient_checkpointing_kwargs`: None
- `include_inputs_for_metrics`: False
- `include_for_metrics`: []
- `eval_do_concat_batches`: True
- `fp16_backend`: auto
- `push_to_hub_model_id`: None
- `push_to_hub_organization`: None
- `mp_parameters`:
- `auto_find_batch_size`: False
- `full_determinism`: False
- `torchdynamo`: None
- `ray_scope`: last
- `ddp_timeout`: 1800
- `torch_compile`: False
- `torch_compile_backend`: None
- `torch_compile_mode`: None
- `include_tokens_per_second`: False
- `include_num_input_tokens_seen`: False
- `neftune_noise_alpha`: None
- `optim_target_modules`: None
- `batch_eval_metrics`: False
- `eval_on_start`: False
- `use_liger_kernel`: False
- `liger_kernel_config`: None
- `eval_use_gather_object`: False
- `average_tokens_across_devices`: False
- `prompts`: None
- `batch_sampler`: batch_sampler
- `multi_dataset_batch_sampler`: proportional
- `router_mapping`: {}
- `learning_rate_mapping`: {}
</details>
### Training Logs
| Epoch | Step | Training Loss | chem-dev_ndcg@10 |
|:----------:|:--------:|:-------------:|:--------------------:|
| -1 | -1 | - | 0.1188 (-0.2831) |
| 0.0005 | 1 | 1.9222 | - |
| 0.0498 | 100 | 1.8084 | - |
| 0.0996 | 200 | 1.2947 | 0.2862 (-0.1157) |
| 0.1495 | 300 | 1.1573 | - |
| 0.1993 | 400 | 1.17 | 0.3567 (-0.0452) |
| 0.2491 | 500 | 1.0609 | - |
| 0.2989 | 600 | 1.01 | 0.3747 (-0.0272) |
| 0.3488 | 700 | 0.9806 | - |
| 0.3986 | 800 | 0.9208 | 0.3963 (-0.0056) |
| 0.4484 | 900 | 0.9022 | - |
| 0.4982 | 1000 | 0.8722 | 0.4106 (+0.0087) |
| 0.5480 | 1100 | 0.9325 | - |
| 0.5979 | 1200 | 0.768 | 0.4316 (+0.0298) |
| 0.6477 | 1300 | 0.8151 | - |
| 0.6975 | 1400 | 0.7569 | 0.4506 (+0.0487) |
| 0.7473 | 1500 | 0.7216 | - |
| 0.7972 | 1600 | 0.7571 | 0.4643 (+0.0625) |
| 0.8470 | 1700 | 0.6993 | - |
| 0.8968 | 1800 | 0.6709 | 0.4713 (+0.0694) |
| 0.9466 | 1900 | 0.7021 | - |
| 0.9965 | 2000 | 0.7693 | 0.4805 (+0.0787) |
| 1.0458 | 2100 | 0.5179 | - |
| 1.0957 | 2200 | 0.4932 | 0.4800 (+0.0781) |
| 1.1455 | 2300 | 0.5568 | - |
| 1.1953 | 2400 | 0.4191 | 0.4821 (+0.0803) |
| 1.2451 | 2500 | 0.4702 | - |
| 1.2949 | 2600 | 0.4126 | 0.4851 (+0.0833) |
| 1.3448 | 2700 | 0.4744 | - |
| 1.3946 | 2800 | 0.4404 | 0.4907 (+0.0888) |
| 1.4444 | 2900 | 0.4712 | - |
| 1.4942 | 3000 | 0.4382 | 0.4913 (+0.0894) |
| 1.5441 | 3100 | 0.5049 | - |
| 1.5939 | 3200 | 0.4714 | 0.4886 (+0.0868) |
| 1.6437 | 3300 | 0.3885 | - |
| 1.6935 | 3400 | 0.4361 | 0.4924 (+0.0906) |
| 1.7434 | 3500 | 0.4207 | - |
| **1.7932** | **3600** | **0.4384** | **0.4928 (+0.0910)** |
| 1.8430 | 3700 | 0.4187 | - |
| 1.8928 | 3800 | 0.4271 | 0.4937 (+0.0919) |
| 1.9426 | 3900 | 0.3581 | - |
| 1.9925 | 4000 | 0.3751 | 0.4910 (+0.0891) |
| 2.0419 | 4100 | 0.2494 | - |
| 2.0917 | 4200 | 0.2045 | 0.4869 (+0.0850) |
| 2.1415 | 4300 | 0.1532 | - |
| 2.1913 | 4400 | 0.1268 | 0.4838 (+0.0820) |
| 2.2411 | 4500 | 0.2108 | - |
| 2.2910 | 4600 | 0.2292 | 0.4889 (+0.0870) |
| 2.3408 | 4700 | 0.2154 | - |
| 2.3906 | 4800 | 0.1574 | 0.4921 (+0.0902) |
| 2.4404 | 4900 | 0.1677 | - |
| 2.4903 | 5000 | 0.1596 | 0.4826 (+0.0807) |
| 2.5401 | 5100 | 0.1456 | - |
| 2.5899 | 5200 | 0.2177 | 0.4867 (+0.0849) |
| 2.6397 | 5300 | 0.1227 | - |
| 2.6895 | 5400 | 0.1638 | 0.4880 (+0.0862) |
| 2.7394 | 5500 | 0.1192 | - |
| 2.7892 | 5600 | 0.2003 | 0.4848 (+0.0829) |
| 2.8390 | 5700 | 0.2717 | - |
| 2.8888 | 5800 | 0.1546 | 0.4841 (+0.0822) |
| 2.9387 | 5900 | 0.268 | - |
| 2.9885 | 6000 | 0.2253 | 0.4858 (+0.0840) |
| -1 | -1 | - | 0.4928 (+0.0910) |
* The bold row denotes the saved checkpoint.
### Framework Versions
- Python: 3.10.12
- Sentence Transformers: 5.0.0
- Transformers: 4.53.2
- PyTorch: 2.7.0+cpu
- Accelerate: 1.6.0
- Datasets: 3.2.0
- Tokenizers: 0.21.2
## Citation
### BibTeX
#### Sentence Transformers
```bibtex
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
```
<!--
## Glossary
*Clearly define terms in order to be accessible across audiences.*
-->
<!--
## Model Card Authors
*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
-->
<!--
## Model Card Contact
*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
-->