Genereux-akotenou's picture
Update README.md
1e14ff0 verified
|
raw
history blame contribute delete
2.52 kB
---
tags:
- dnabert
- bacteria
- kmer
- translation-initiation-site
- sequence-modeling
- DNA
library_name: transformers
---
# BacteriaTIS-DNABERT-K6-89M
This model, `BacteriaTIS-DNABERT-K6-89M`, is a **DNA sequence classifier** based on **DNABERT** trained for **Translation Initiation Site (TIS) classification** in bacterial genomes. It operates on **6-mer tokenized sequences** derived from a **60 bp window (30 bp upstream + 30 bp downstream)** around the TIS. The model was fine-tuned using **89M trainable parameters**.
## Model Details
- **Base Model:** DNABERT
- **Task:** Translation Initiation Site (TIS) Classification
- **K-mer Size:** 6
- **Input Sequence Window:** 60 bp (30 upstream + 30 downstream) of TIS site in ORF sequence
- **Number of Trainable Parameters:** 89M
- **Max Sequence Length:** 512
- **Precision Used:** AMP (Automatic Mixed Precision)
---
### **Install Dependencies**
Ensure you have `transformers` and `torch` installed:
```bash
pip install torch transformers
```
### **Load Model & Tokenizer**
```python
import torch
from transformers import AutoModelForSequenceClassification, AutoTokenizer
# Load Model
model_checkpoint = "Genereux-akotenou/BacteriaTIS-DNABERT-K6-89M"
model = AutoModelForSequenceClassification.from_pretrained(model_checkpoint)
tokenizer = AutoTokenizer.from_pretrained(model_checkpoint)
```
### **Inference Example**
To classify a TIS, extract a 60 bp sequence window (30 bp upstream + 30 bp downstream) of the TIS codon site and convert it to 6-mers:
```python
def generate_kmer(sequence: str, k: int, overlap: int = 1):
"""Generate k-mer encoding from DNA sequence."""
return " ".join([sequence[j:j+k] for j in range(0, len(sequence) - k + 1, overlap)])
# Example TIS-centered sequence (60 bp window)
sequence = "AGAACCAGCCGGAGACCTCCTGCTCGTACATGAAAGGCTCGAGCAGCCGGGCGAGGGCGG"
seq_kmer = generate_kmer(sequence, k=6)
```
### **Run Model**
```python
# Tokenize input
inputs = tokenizer(
seq_kmer,
return_tensors="pt",
max_length=tokenizer.model_max_length,
padding="max_length",
truncation=True
)
# Run inference
with torch.no_grad():
outputs = model(**inputs)
logits = outputs.logits
predicted_class = torch.argmax(logits, dim=-1).item()
```
<!-- ### **Citation**
If you use this model in your research, please cite:
```tex
@article{paper title,
title={DNABERT for Bacterial Translation Initiation Site Classification},
author={Genereux Akotenou, et al.},
journal={Hugging Face Model Hub},
year={2024}
}
``` -->