|
|
--- |
|
|
base_model: BAAI/bge-large-en-v1.5 |
|
|
library_name: sentence-transformers |
|
|
pipeline_tag: sentence-similarity |
|
|
tags: |
|
|
- sentence-transformers |
|
|
- sentence-similarity |
|
|
- feature-extraction |
|
|
- generated_from_trainer |
|
|
- dataset_size:2940 |
|
|
- loss:MultipleNegativesSymmetricRankingLoss |
|
|
widget: |
|
|
- source_sentence: Enlarge a shape, with a centre of enlargement given, by a positive |
|
|
scale factor bigger than 1, where the centre of enlargement lies on the edge or |
|
|
outside of the object The triangle is enlarged by scale factor 3, with the centre |
|
|
of enlargement at (1,0). What are the new coordinates of the point marked T ? |
|
|
![A coordinate grid with the x-axis going from -1 to 10 and the y-axis going from |
|
|
-1 to 7. 3 points are plotted and joined with straight lines to form a triangle. |
|
|
The points are (1,1), (1,4) and (3,1). Point (3,1) is labelled as T. Point (1,0) |
|
|
is also plotted.]() (9,3) |
|
|
sentences: |
|
|
- Confuses powers and multiples |
|
|
- Enlarges by the wrong centre of enlargement |
|
|
- When asked for factors of an algebraic expression, thinks any part of a term will |
|
|
be a factor |
|
|
- source_sentence: 'Identify a right-angled triangle from a description of the properties |
|
|
A triangle has the following angles: 90^, 45^, 45^ Statement 1. It must be a right |
|
|
angled triangle Statement 2. It must be an isosceles triangle Which is true? Statement |
|
|
1' |
|
|
sentences: |
|
|
- When solving a problem using written division (bus-stop method), does the calculation |
|
|
from right to left |
|
|
- Thinks finding a fraction of an amount means subtracting from that amount |
|
|
- Believes isosceles triangles cannot have right angles |
|
|
- source_sentence: Convert from kilometers to miles 1 km≈ 0.6 miles 4 km≈□ miles 0.24 |
|
|
sentences: |
|
|
- Believes multiplying two negatives gives a negative answer |
|
|
- Believes two lines of the same length are parallel |
|
|
- When multiplying decimals, ignores place value and just multiplies the digits |
|
|
- source_sentence: Identify the order of rotational symmetry of a shape Which shape |
|
|
has rotational symmetry order 4 ? ![Trapezium]() |
|
|
sentences: |
|
|
- Believes the whole and remainder are the other way when changing an improper fraction |
|
|
to a mixed number |
|
|
- Does not know how to find order of rotational symmetry |
|
|
- Fails to reflect across mirror line |
|
|
- source_sentence: Identify whether two shapes are similar or not Tom and Katie are |
|
|
discussing similarity. Who is correct? Tom says these two rectangles are similar |
|
|
![Two rectangles of different sizes. One rectangle has width 2cm and height 3cm. |
|
|
The other rectangle has width 4cm and height 9cm. ]() Katie says these two rectangles |
|
|
are similar ![Two rectangles of different sizes. One rectangle has width 4cm and |
|
|
height 6cm. The other rectangle has width 7cm and height 9cm. ]() Only Katie |
|
|
sentences: |
|
|
- Does not recognise when one part of a fraction is the negative of the other |
|
|
- When solving simultaneous equations, thinks they can't multiply each equation |
|
|
by a different number |
|
|
- Thinks adding the same value to each side makes shapes similar |
|
|
--- |
|
|
|
|
|
# SentenceTransformer based on BAAI/bge-large-en-v1.5 |
|
|
|
|
|
This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [BAAI/bge-large-en-v1.5](https://huggingface.co/BAAI/bge-large-en-v1.5) on the csv dataset. It maps sentences & paragraphs to a 1024-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more. |
|
|
|
|
|
## Model Details |
|
|
|
|
|
### Model Description |
|
|
- **Model Type:** Sentence Transformer |
|
|
- **Base model:** [BAAI/bge-large-en-v1.5](https://huggingface.co/BAAI/bge-large-en-v1.5) <!-- at revision d4aa6901d3a41ba39fb536a557fa166f842b0e09 --> |
|
|
- **Maximum Sequence Length:** 512 tokens |
|
|
- **Output Dimensionality:** 1024 tokens |
|
|
- **Similarity Function:** Cosine Similarity |
|
|
- **Training Dataset:** |
|
|
- csv |
|
|
<!-- - **Language:** Unknown --> |
|
|
<!-- - **License:** Unknown --> |
|
|
|
|
|
### Model Sources |
|
|
|
|
|
- **Documentation:** [Sentence Transformers Documentation](https://sbert.net) |
|
|
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers) |
|
|
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers) |
|
|
|
|
|
### Full Model Architecture |
|
|
|
|
|
``` |
|
|
SentenceTransformer( |
|
|
(0): Transformer({'max_seq_length': 512, 'do_lower_case': True}) with Transformer model: BertModel |
|
|
(1): Pooling({'word_embedding_dimension': 1024, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True}) |
|
|
(2): Normalize() |
|
|
) |
|
|
``` |
|
|
|
|
|
## Usage |
|
|
|
|
|
### Direct Usage (Sentence Transformers) |
|
|
|
|
|
First install the Sentence Transformers library: |
|
|
|
|
|
```bash |
|
|
pip install -U sentence-transformers |
|
|
``` |
|
|
|
|
|
Then you can load this model and run inference. |
|
|
```python |
|
|
from sentence_transformers import SentenceTransformer |
|
|
|
|
|
# Download from the 🤗 Hub |
|
|
model = SentenceTransformer("Gurveer05/bge-large-eedi-2024") |
|
|
# Run inference |
|
|
sentences = [ |
|
|
'Identify whether two shapes are similar or not Tom and Katie are discussing similarity. Who is correct? Tom says these two rectangles are similar ![Two rectangles of different sizes. One rectangle has width 2cm and height 3cm. The other rectangle has width 4cm and height 9cm. ]() Katie says these two rectangles are similar ![Two rectangles of different sizes. One rectangle has width 4cm and height 6cm. The other rectangle has width 7cm and height 9cm. ]() Only Katie', |
|
|
'Thinks adding the same value to each side makes shapes similar', |
|
|
"When solving simultaneous equations, thinks they can't multiply each equation by a different number", |
|
|
] |
|
|
embeddings = model.encode(sentences) |
|
|
print(embeddings.shape) |
|
|
# [3, 1024] |
|
|
|
|
|
# Get the similarity scores for the embeddings |
|
|
similarities = model.similarity(embeddings, embeddings) |
|
|
print(similarities.shape) |
|
|
# [3, 3] |
|
|
``` |
|
|
|
|
|
<!-- |
|
|
### Direct Usage (Transformers) |
|
|
|
|
|
<details><summary>Click to see the direct usage in Transformers</summary> |
|
|
|
|
|
</details> |
|
|
--> |
|
|
|
|
|
<!-- |
|
|
### Downstream Usage (Sentence Transformers) |
|
|
|
|
|
You can finetune this model on your own dataset. |
|
|
|
|
|
<details><summary>Click to expand</summary> |
|
|
|
|
|
</details> |
|
|
--> |
|
|
|
|
|
<!-- |
|
|
### Out-of-Scope Use |
|
|
|
|
|
*List how the model may foreseeably be misused and address what users ought not to do with the model.* |
|
|
--> |
|
|
|
|
|
<!-- |
|
|
## Bias, Risks and Limitations |
|
|
|
|
|
*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.* |
|
|
--> |
|
|
|
|
|
<!-- |
|
|
### Recommendations |
|
|
|
|
|
*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.* |
|
|
--> |
|
|
|
|
|
## Training Details |
|
|
|
|
|
### Training Dataset |
|
|
|
|
|
#### csv |
|
|
|
|
|
* Dataset: csv |
|
|
* Size: 2,940 training samples |
|
|
* Columns: <code>sentence1</code> and <code>sentence2</code> |
|
|
* Approximate statistics based on the first 1000 samples: |
|
|
| | sentence1 | sentence2 | |
|
|
|:--------|:------------------------------------------------------------------------------------|:----------------------------------------------------------------------------------| |
|
|
| type | string | string | |
|
|
| details | <ul><li>min: 13 tokens</li><li>mean: 56.03 tokens</li><li>max: 249 tokens</li></ul> | <ul><li>min: 6 tokens</li><li>mean: 15.19 tokens</li><li>max: 39 tokens</li></ul> | |
|
|
* Samples: |
|
|
| sentence1 | sentence2 | |
|
|
|:----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------------------------------------------------------| |
|
|
| <code>Read a fraction on a scale where the required number is marked by a dash between two numbers What fraction is the arrow pointing to? ![An image of a numberline with 5 dashes. On the leftmost dash is the number 1/6. On the rightmost dash is the number 3/6. An arrow points to the 4th dash from the left]() 3/4</code> | <code>When reading a dash on a number line does not take into account the number at the start or the width of each division</code> | |
|
|
| <code>Substitute positive non-integer values into expressions involving powers or roots Jo and Paul are discussing quadratic equations. Jo says there is no value of x that can make (1-x)^2 negative. Paul says there is no value of x that can make 1-x^2 positive. Who is correct? Both Jo and Paul</code> | <code>Assumes a fact without considering enough examples</code> | |
|
|
| <code>Recognise and use efficient methods for mental multiplication Tom and Katie are discussing mental multiplication strategies. Tom says 15 × 42=154 × 2 Katie says 15 × 42=(15 × 4)+(15 × 2) Who is correct? Only Tom</code> | <code>Does not correctly apply the commutative property of multiplication</code> | |
|
|
* Loss: [<code>MultipleNegativesSymmetricRankingLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#multiplenegativessymmetricrankingloss) with these parameters: |
|
|
```json |
|
|
{ |
|
|
"scale": 20.0, |
|
|
"similarity_fct": "cos_sim" |
|
|
} |
|
|
``` |
|
|
|
|
|
### Training Hyperparameters |
|
|
#### Non-Default Hyperparameters |
|
|
|
|
|
- `eval_strategy`: steps |
|
|
- `per_device_train_batch_size`: 16 |
|
|
- `per_device_eval_batch_size`: 16 |
|
|
- `num_train_epochs`: 20 |
|
|
- `fp16`: True |
|
|
- `load_best_model_at_end`: True |
|
|
- `batch_sampler`: no_duplicates |
|
|
|
|
|
#### All Hyperparameters |
|
|
<details><summary>Click to expand</summary> |
|
|
|
|
|
- `overwrite_output_dir`: False |
|
|
- `do_predict`: False |
|
|
- `eval_strategy`: steps |
|
|
- `prediction_loss_only`: True |
|
|
- `per_device_train_batch_size`: 16 |
|
|
- `per_device_eval_batch_size`: 16 |
|
|
- `per_gpu_train_batch_size`: None |
|
|
- `per_gpu_eval_batch_size`: None |
|
|
- `gradient_accumulation_steps`: 1 |
|
|
- `eval_accumulation_steps`: None |
|
|
- `torch_empty_cache_steps`: None |
|
|
- `learning_rate`: 5e-05 |
|
|
- `weight_decay`: 0.0 |
|
|
- `adam_beta1`: 0.9 |
|
|
- `adam_beta2`: 0.999 |
|
|
- `adam_epsilon`: 1e-08 |
|
|
- `max_grad_norm`: 1.0 |
|
|
- `num_train_epochs`: 20 |
|
|
- `max_steps`: -1 |
|
|
- `lr_scheduler_type`: linear |
|
|
- `lr_scheduler_kwargs`: {} |
|
|
- `warmup_ratio`: 0.0 |
|
|
- `warmup_steps`: 0 |
|
|
- `log_level`: passive |
|
|
- `log_level_replica`: warning |
|
|
- `log_on_each_node`: True |
|
|
- `logging_nan_inf_filter`: True |
|
|
- `save_safetensors`: True |
|
|
- `save_on_each_node`: False |
|
|
- `save_only_model`: False |
|
|
- `restore_callback_states_from_checkpoint`: False |
|
|
- `no_cuda`: False |
|
|
- `use_cpu`: False |
|
|
- `use_mps_device`: False |
|
|
- `seed`: 42 |
|
|
- `data_seed`: None |
|
|
- `jit_mode_eval`: False |
|
|
- `use_ipex`: False |
|
|
- `bf16`: False |
|
|
- `fp16`: True |
|
|
- `fp16_opt_level`: O1 |
|
|
- `half_precision_backend`: auto |
|
|
- `bf16_full_eval`: False |
|
|
- `fp16_full_eval`: False |
|
|
- `tf32`: None |
|
|
- `local_rank`: 0 |
|
|
- `ddp_backend`: None |
|
|
- `tpu_num_cores`: None |
|
|
- `tpu_metrics_debug`: False |
|
|
- `debug`: [] |
|
|
- `dataloader_drop_last`: False |
|
|
- `dataloader_num_workers`: 0 |
|
|
- `dataloader_prefetch_factor`: None |
|
|
- `past_index`: -1 |
|
|
- `disable_tqdm`: False |
|
|
- `remove_unused_columns`: True |
|
|
- `label_names`: None |
|
|
- `load_best_model_at_end`: True |
|
|
- `ignore_data_skip`: False |
|
|
- `fsdp`: [] |
|
|
- `fsdp_min_num_params`: 0 |
|
|
- `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False} |
|
|
- `fsdp_transformer_layer_cls_to_wrap`: None |
|
|
- `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None} |
|
|
- `deepspeed`: None |
|
|
- `label_smoothing_factor`: 0.0 |
|
|
- `optim`: adamw_torch |
|
|
- `optim_args`: None |
|
|
- `adafactor`: False |
|
|
- `group_by_length`: False |
|
|
- `length_column_name`: length |
|
|
- `ddp_find_unused_parameters`: None |
|
|
- `ddp_bucket_cap_mb`: None |
|
|
- `ddp_broadcast_buffers`: False |
|
|
- `dataloader_pin_memory`: True |
|
|
- `dataloader_persistent_workers`: False |
|
|
- `skip_memory_metrics`: True |
|
|
- `use_legacy_prediction_loop`: False |
|
|
- `push_to_hub`: False |
|
|
- `resume_from_checkpoint`: None |
|
|
- `hub_model_id`: None |
|
|
- `hub_strategy`: every_save |
|
|
- `hub_private_repo`: False |
|
|
- `hub_always_push`: False |
|
|
- `gradient_checkpointing`: False |
|
|
- `gradient_checkpointing_kwargs`: None |
|
|
- `include_inputs_for_metrics`: False |
|
|
- `eval_do_concat_batches`: True |
|
|
- `fp16_backend`: auto |
|
|
- `push_to_hub_model_id`: None |
|
|
- `push_to_hub_organization`: None |
|
|
- `mp_parameters`: |
|
|
- `auto_find_batch_size`: False |
|
|
- `full_determinism`: False |
|
|
- `torchdynamo`: None |
|
|
- `ray_scope`: last |
|
|
- `ddp_timeout`: 1800 |
|
|
- `torch_compile`: False |
|
|
- `torch_compile_backend`: None |
|
|
- `torch_compile_mode`: None |
|
|
- `dispatch_batches`: None |
|
|
- `split_batches`: None |
|
|
- `include_tokens_per_second`: False |
|
|
- `include_num_input_tokens_seen`: False |
|
|
- `neftune_noise_alpha`: None |
|
|
- `optim_target_modules`: None |
|
|
- `batch_eval_metrics`: False |
|
|
- `eval_on_start`: False |
|
|
- `eval_use_gather_object`: False |
|
|
- `batch_sampler`: no_duplicates |
|
|
- `multi_dataset_batch_sampler`: proportional |
|
|
|
|
|
</details> |
|
|
|
|
|
### Training Logs |
|
|
| Epoch | Step | Training Loss | |
|
|
|:-------:|:-------:|:-------------:| |
|
|
| 0.25 | 23 | 1.0714 | |
|
|
| 0.5 | 46 | 0.9487 | |
|
|
| 0.75 | 69 | 0.8001 | |
|
|
| 1.0 | 92 | 0.7443 | |
|
|
| 1.25 | 115 | 0.3951 | |
|
|
| 1.5 | 138 | 0.3903 | |
|
|
| 1.75 | 161 | 0.3867 | |
|
|
| 2.0 | 184 | 0.3386 | |
|
|
| 2.25 | 207 | 0.2206 | |
|
|
| 2.5 | 230 | 0.2051 | |
|
|
| 2.75 | 253 | 0.2098 | |
|
|
| 3.0 | 276 | 0.1989 | |
|
|
| 3.25 | 299 | 0.1486 | |
|
|
| 3.5 | 322 | 0.1463 | |
|
|
| 3.75 | 345 | 0.1453 | |
|
|
| 4.0 | 368 | 0.1237 | |
|
|
| 4.25 | 391 | 0.0956 | |
|
|
| 4.5 | 414 | 0.0939 | |
|
|
| 4.75 | 437 | 0.1115 | |
|
|
| 5.0 | 460 | 0.0925 | |
|
|
| 5.25 | 483 | 0.0778 | |
|
|
| 5.5 | 506 | 0.0744 | |
|
|
| 5.75 | 529 | 0.09 | |
|
|
| 6.0 | 552 | 0.0782 | |
|
|
| 6.25 | 575 | 0.0454 | |
|
|
| 6.5 | 598 | 0.0697 | |
|
|
| 6.75 | 621 | 0.059 | |
|
|
| 7.0 | 644 | 0.033 | |
|
|
| 7.25 | 667 | 0.0309 | |
|
|
| 7.5 | 690 | 0.0548 | |
|
|
| 7.75 | 713 | 0.0605 | |
|
|
| **8.0** | **736** | **0.0431** | |
|
|
| 8.25 | 759 | 0.0224 | |
|
|
| 8.5 | 782 | 0.0381 | |
|
|
| 8.75 | 805 | 0.0451 | |
|
|
| 9.0 | 828 | 0.0169 | |
|
|
| 9.25 | 851 | 0.0228 | |
|
|
| 9.5 | 874 | 0.0257 | |
|
|
|
|
|
* The bold row denotes the saved checkpoint. |
|
|
|
|
|
### Framework Versions |
|
|
- Python: 3.10.14 |
|
|
- Sentence Transformers: 3.1.0 |
|
|
- Transformers: 4.44.0 |
|
|
- PyTorch: 2.4.0 |
|
|
- Accelerate: 0.33.0 |
|
|
- Datasets: 2.19.2 |
|
|
- Tokenizers: 0.19.1 |
|
|
|
|
|
## Citation |
|
|
|
|
|
### BibTeX |
|
|
|
|
|
#### Sentence Transformers |
|
|
```bibtex |
|
|
@inproceedings{reimers-2019-sentence-bert, |
|
|
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks", |
|
|
author = "Reimers, Nils and Gurevych, Iryna", |
|
|
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing", |
|
|
month = "11", |
|
|
year = "2019", |
|
|
publisher = "Association for Computational Linguistics", |
|
|
url = "https://arxiv.org/abs/1908.10084", |
|
|
} |
|
|
``` |
|
|
|
|
|
<!-- |
|
|
## Glossary |
|
|
|
|
|
*Clearly define terms in order to be accessible across audiences.* |
|
|
--> |
|
|
|
|
|
<!-- |
|
|
## Model Card Authors |
|
|
|
|
|
*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.* |
|
|
--> |
|
|
|
|
|
<!-- |
|
|
## Model Card Contact |
|
|
|
|
|
*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.* |
|
|
--> |