Harsha901's picture
Update README.md
0cd5d1a verified
metadata
license: mit
language:
  - en
base_model:
  - huawei-noah/TinyBERT_General_4L_312D
pipeline_tag: text-classification
tags:
  - sentiment-analysis
  - tinybert
  - transformers
  - text-classification
  - imdb

πŸ“¦ TinyBERT IMDB Sentiment Analysis Model

This is a fine-tuned TinyBERT model for binary sentiment classification on a 5,000-sample subset of the IMDB dataset. It predicts whether a movie review is positive or negative.

🧠 Model Details

  • Base model: huawei-noah/TinyBERT_General_4L_312D
  • Task: Sentiment Classification (Binary)
  • Dataset: 4,000 training + 1,000 test samples from IMDB
  • Tokenizer: AutoTokenizer.from_pretrained('huawei-noah/TinyBERT_General_4L_312D')
  • Max length: 300 tokens
  • Batch size: 64
  • Training framework: Hugging Face Trainer
  • Device: A100 GPU

πŸ“Š Evaluation Metrics

πŸ“Š Evaluation Metrics (on 1,000-sample test set)

Metric Value
Accuracy 88.02%
Evaluation Loss 0.2962
Runtime 30.9 sec
Samples per Second 485

πŸš€ How to Use

from transformers import pipeline

classifier = pipeline(
"text-classification",
model="Harsha901/tinybert-imdb-sentiment-analysis-model"
)

result = classifier("This movie was absolutely amazing!")
print(result) # [{'label': 'LABEL_1', 'score': 0.98}]