metadata
license: mit
language:
- en
base_model:
- huawei-noah/TinyBERT_General_4L_312D
pipeline_tag: text-classification
tags:
- sentiment-analysis
- tinybert
- transformers
- text-classification
- imdb
π¦ TinyBERT IMDB Sentiment Analysis Model
This is a fine-tuned TinyBERT model for binary sentiment classification on a 5,000-sample subset of the IMDB dataset. It predicts whether a movie review is positive or negative.
π§ Model Details
- Base model:
huawei-noah/TinyBERT_General_4L_312D
- Task: Sentiment Classification (Binary)
- Dataset: 4,000 training + 1,000 test samples from IMDB
- Tokenizer:
AutoTokenizer.from_pretrained('huawei-noah/TinyBERT_General_4L_312D')
- Max length: 300 tokens
- Batch size: 64
- Training framework: Hugging Face
Trainer
- Device: A100 GPU
π Evaluation Metrics
π Evaluation Metrics (on 1,000-sample test set)
Metric | Value |
---|---|
Accuracy | 88.02% |
Evaluation Loss | 0.2962 |
Runtime | 30.9 sec |
Samples per Second | 485 |
π How to Use
from transformers import pipeline
classifier = pipeline(
"text-classification",
model="Harsha901/tinybert-imdb-sentiment-analysis-model"
)
result = classifier("This movie was absolutely amazing!")
print(result) # [{'label': 'LABEL_1', 'score': 0.98}]