SentenceTransformer based on hiieu/halong_embedding
This is a sentence-transformers model finetuned from hiieu/halong_embedding. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
Model Details
Model Description
- Model Type: Sentence Transformer
- Base model: hiieu/halong_embedding
- Maximum Sequence Length: 512 tokens
- Output Dimensionality: 768 dimensions
- Similarity Function: Cosine Similarity
Model Sources
Full Model Architecture
SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False, 'architecture': 'XLMRobertaModel'})
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): Normalize()
)
Usage
Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
model = SentenceTransformer("HoangVuSnape/halong_embedding_pr_v3_ep30_new")
sentences = [
'Xin hãy liệt kê các trung tâm của Trường Đại học Sư phạm Kỹ thuật TP. Hồ Chí Minh.',
'Phòng Đào tạo\n\n2. Phòng Đào tạo không chính quy\n\n3. Phòng Tuyển sinh và Công tác Sinh viên\n\n4. Phòng Truyền thông\n\n5. Phòng Khoa học Công nghệ - Quan hệ Quốc tế\n\n6. Phòng Quan hệ Doanh nghiệp\n\n7. Phòng Thanh tra - Giáo dục\n\n8. Phòng Đảm bảo Chất lượng\n\n9. Phòng Tổ chức - Hành chính\n\n10. Phòng Kế hoạch - Tài chính\n\n11. Phòng Quản trị Cơ sở Vật chất\n\n12. Phòng Thiết bị - Vật tư\n\n13. Ban quản lý KTX\n\n14. Trạm Y tế\n\n15. Bộ phận Quản lý Hồ sơ Dự án\n\nC. Danh sách các trung tâm của Trường Đại học Sư phạm Kỹ thuật Thành phố Hồ Chí Minh:\n\n1. Ngoại ngữ\n\n2. Tin học\n\n3. Thư viện\n\n4. Hợp tác Đào tạo Quốc tế\n\n5. Việt – Đức\n\n6. Dịch vụ Sinh viên\n\n7. Thông tin – Máy tính\n\n8. Dạy học số\n\n9. Kỹ thuật Tổng hợp\n\n10. Chế tạo và Thiết kế Thiết bị Công nghiệp\n\n11. Đào tạo và hướng nghiệp quốc tế Việt Nhật\n\n12. Đào tạo ngắn hạn\n\n13. Giáo dục Thể chất - Quốc phòng\n\n14. Đào tạo Bồi dưỡng giáo viên phổ thông, giáo dục nghề nghiệp miền Trung - Tây Nguyên\n\n15. Nghiên cứu và Ứng dụng Kỹ thuật Xây dựng\n\n16. Bồi dưỡng và Đánh giá kỹ năng nghề Quốc gia\n\n17. Phát triển ngôn ngữ\n\n18. Nghiên cứu và Chuyển giao Công nghệ\n\n19. Công nghệ phần mềm\n\n20. Hàn ngữ học Dong A\n\n21. Sáng tạo và Khởi nghiệp\n\n22. Trung tâm hướng nghiệp và đào tạo Việt Nhật\n\nD. Các ngành đào tạo trình độ đại học\n\nĐi cùng với sự vận động và phát triển của nền kinh tế đất nước theo hướng công nghiệp hóa, hiện đại hóa, Trường Đại học Sư phạm Kỹ thuật Tp. Hồ Chí Minh đã tiếp cận thực tế để mở rộng đào tạo gần 30 ngành đào tạo trình độ đại học\n\ni.',
'Thực hiện hướng dẫn của Bộ Giáo dục và Đào tạo tại Công văn số 1919/BGDĐT-GDĐH ngày 28 tháng 4 năm 2023, phương thức xét tuyển kết quả điểm thi tốt nghiệp Trung học phổ thông vẫn được giữ nguyên như năm 2022. Tổ hợp môn xét tuyển: B00 (Toán – Hóa – Sinh) chung cho tất cả các ngành. năm 2022, Trường Đại học Y khoa Phạm Ngọc Thạch tuyển được 1.367 chỉ tiêu (đạt 104,4% so với chỉ tiêu đề ra). chỉ tiêu tuyển sinh đại học chính quy của Trường Đại học Y khoa Phạm Ngọc Thạch năm 2023. 1. Y khoa: 660 2. Dược học: 90 3. Điều dưỡng: 250 4. Dinh dưỡng: 60 5. Răng Hàm Mặt: 90 6. Kỹ thuật xét nghiệm y học: 50 7. Kỹ thuật hình ảnh y học: 40 8. Kỹ thuật phục hồi chức năng: 30 9. Khúc xạ nhãn khoa: 40 10. Y tế công cộng: 56\n\nGhi chú: chỉ tiêu được chia cho các thí sinh có hộ khẩu ở TP HCM và ngoài TP HCM với tỉ lệ 50%\n\nĐiểm chuẩn của trường Đại học Y khoa Phạm Ngọc Thạch 2023: Y khoa, Điểm chuẩn thí sinh có hộ khẩu tại TP HCM(TP): 25,90, Điểm chuẩn thí sinh có hộ khẩu ngoài TP HCM(TQ): 26.31 Dược học, Điểm chuẩn thí sinh có hộ khẩu tại TP HCM(TP): 25,28, Điểm chuẩn thí sinh có hộ khẩu ngoài TP HCM(TQ): 25,25 Điều dưỡng, Điểm chuẩn thí sinh có hộ khẩu tại TP HCM(TP): 22,40, Điểm chuẩn thí sinh có hộ khẩu ngoài TP HCM(TQ): 22,40 Dinh dưỡng, Điểm chuẩn thí sinh có hộ khẩu tại TP HCM(TP): 22,25, Điểm chuẩn thí sinh có hộ khẩu ngoài TP HCM(TQ): 22,80 Răng - Hàm - Mặt, Điểm chuẩn thí sinh có hộ khẩu tại TP HCM(TP): 26,00, Điểm chuẩn thí sinh có hộ khẩu ngoài TP HCM(TQ): 26,28 Kỹ thuật Xét nghiệm Y học, Điểm chuẩn thí sinh có hộ khẩu tại TP HCM(TP): 24,54, Điểm chuẩn thí sinh có hộ khẩu ngoài TP HCM(TQ): 24,47 Kỹ thuật Hình ảnh Y học, Điểm chuẩn thí sinh có hộ khẩu tại TP HCM(TP): 23,45, Điểm chuẩn thí sinh có hộ khẩu ngoài TP HCM(TQ): 23,61 Khúc xạ nhãn khoa, Điểm chuẩn thí sinh có hộ khẩu tại TP HCM(TP): 23,75, Điểm chuẩn thí sinh có hộ khẩu ngoài TP HCM(TQ): 23,75 Y tế công cộng, Điểm chuẩn thí sinh có hộ khẩu tại TP HCM(TP): 18,85, Điểm chuẩn thí sinh có hộ khẩu ngoài TP HCM(TQ): 18,35 Kỹ thuật Phục hồi chức năng, Điểm chuẩn thí sinh có hộ khẩu tại TP HCM(TP): 23,15, Điểm chuẩn thí sinh có hộ khẩu ngoài TP HCM(TQ): 23,09',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
similarities = model.similarity(embeddings, embeddings)
print(similarities)
Evaluation
Metrics
Information Retrieval
Metric |
Value |
cosine_accuracy@1 |
0.7976 |
cosine_accuracy@3 |
0.9749 |
cosine_accuracy@5 |
0.9905 |
cosine_accuracy@10 |
0.9986 |
cosine_precision@1 |
0.7976 |
cosine_precision@3 |
0.325 |
cosine_precision@5 |
0.1981 |
cosine_precision@10 |
0.0999 |
cosine_recall@1 |
0.7976 |
cosine_recall@3 |
0.9749 |
cosine_recall@5 |
0.9905 |
cosine_recall@10 |
0.9986 |
cosine_ndcg@10 |
0.9131 |
cosine_mrr@10 |
0.8839 |
cosine_map@100 |
0.884 |
Information Retrieval
Metric |
Value |
cosine_accuracy@1 |
0.8057 |
cosine_accuracy@3 |
0.9776 |
cosine_accuracy@5 |
0.9925 |
cosine_accuracy@10 |
0.9986 |
cosine_precision@1 |
0.8057 |
cosine_precision@3 |
0.3259 |
cosine_precision@5 |
0.1985 |
cosine_precision@10 |
0.0999 |
cosine_recall@1 |
0.8057 |
cosine_recall@3 |
0.9776 |
cosine_recall@5 |
0.9925 |
cosine_recall@10 |
0.9986 |
cosine_ndcg@10 |
0.9173 |
cosine_mrr@10 |
0.8896 |
cosine_map@100 |
0.8897 |
Information Retrieval
Metric |
Value |
cosine_accuracy@1 |
0.8064 |
cosine_accuracy@3 |
0.9735 |
cosine_accuracy@5 |
0.9959 |
cosine_accuracy@10 |
1.0 |
cosine_precision@1 |
0.8064 |
cosine_precision@3 |
0.3245 |
cosine_precision@5 |
0.1992 |
cosine_precision@10 |
0.1 |
cosine_recall@1 |
0.8064 |
cosine_recall@3 |
0.9735 |
cosine_recall@5 |
0.9959 |
cosine_recall@10 |
1.0 |
cosine_ndcg@10 |
0.9179 |
cosine_mrr@10 |
0.8899 |
cosine_map@100 |
0.8899 |
Training Details
Training Dataset
Unnamed Dataset
- Size: 1,472 training samples
- Columns:
anchor
and positive
- Approximate statistics based on the first 1000 samples:
|
anchor |
positive |
type |
string |
string |
details |
- min: 9 tokens
- mean: 25.49 tokens
- max: 62 tokens
|
- min: 14 tokens
- mean: 356.38 tokens
- max: 512 tokens
|
- Samples:
anchor |
positive |
Ngành Quản lý Tài nguyên và Môi trường trang bị cho sinh viên những kiến thức và kỹ năng gì? |
Sau khi tốt nghiệp, người học sẽ:
Có kiến thức cơ bản về toán học, khoa học tự nhiên, đáp ứng cho việc tiếp thu các kiến thức giáo dục chuyên nghiệp và khả năng học tập ở trình độ cao hơn
Có các kiến thức kỹ thuật cơ sở ngành và chuyên ngành giúp đủ năng lực phát hiện, giải quyết các vấn đề liên quan đến công nghệ sản xuất, chế tạo và ứng dụng vật liệu vào trong xây dựng, kiểm soát chất lượng nguyên vật liệu và cấu kiện sản phẩm xây dựng, nghiên cứu sản xuất chế tạo và phát triển các loại vật liệu mới, hiện đại, tiên tiến, độc đáo, hiệu quả, xanh, bền vững… nhằm hướng tới sự phát triển bền vững trong công nghiệp xây dựng và kiến trúc, thiết kế và thi công trong các công trình xây dựng; có tính sáng tạo trong hoạt động nghề nghiệp, có khả năng tự học và tự nghiên cứu;
Có kỹ năng cá nhân, nghề nghiệp, giao tiếp, làm việc nhóm đủ để làm việc trong môi trường làm việc liên ngành, đa văn hóa;
Có hiểu biết về kinh tế, chính trị, có các kiến thức cơ bản trong lĩnh vực khoa học xã hội và n... |
Chương trình Kỹ thuật Môi trường đào tạo sinh viên về những năng lực nào và có điểm gì nổi bật đối với chương trình giảng dạy bằng tiếng Anh? |
Sau khi tốt nghiệp, người học sẽ:
Có kiến thức cơ bản về toán học, khoa học tự nhiên, đáp ứng cho việc tiếp thu các kiến thức giáo dục chuyên nghiệp và khả năng học tập ở trình độ cao hơn
Có các kiến thức kỹ thuật cơ sở ngành và chuyên ngành giúp đủ năng lực phát hiện, giải quyết các vấn đề liên quan đến công nghệ sản xuất, chế tạo và ứng dụng vật liệu vào trong xây dựng, kiểm soát chất lượng nguyên vật liệu và cấu kiện sản phẩm xây dựng, nghiên cứu sản xuất chế tạo và phát triển các loại vật liệu mới, hiện đại, tiên tiến, độc đáo, hiệu quả, xanh, bền vững… nhằm hướng tới sự phát triển bền vững trong công nghiệp xây dựng và kiến trúc, thiết kế và thi công trong các công trình xây dựng; có tính sáng tạo trong hoạt động nghề nghiệp, có khả năng tự học và tự nghiên cứu;
Có kỹ năng cá nhân, nghề nghiệp, giao tiếp, làm việc nhóm đủ để làm việc trong môi trường làm việc liên ngành, đa văn hóa;
Có hiểu biết về kinh tế, chính trị, có các kiến thức cơ bản trong lĩnh vực khoa học xã hội và n... |
Ngành Kỹ thuật Dầu khí và Kỹ thuật Địa chất tập trung nghiên cứu và ứng dụng những lĩnh vực cốt lõi nào? |
Các công ty nghiên cứu và khảo sát địa chất, tư vấn về nền móng công trình. Các tổ chức liên quan đến quy hoạch và phát triển đô thị. Kỹ thuật Dầu khí
Tổng quan
Kỹ thuật Dầu khí là ngành học chuyên nghiên cứu về các kỹ thuật khai thác, sản xuất và xử lý dầu khí. Sinh viên sẽ học các phương pháp khoan, khai thác dầu, khí tự nhiên, và xử lý các vấn đề kỹ thuật trong ngành dầu khí, từ việc tìm kiếm và khai thác tài nguyên cho đến việc tối ưu hóa quy trình sản xuất. CÁC ĐIỂM ĐẶC BIỆT
Khả năng ứng dụng cao: Sinh viên ngành Kỹ thuật Dầu khí sẽ được trang bị kiến thức thực tế về công nghệ khai thác dầu khí và các phương pháp tối ưu hóa sản xuất. Ngành công nghiệp chiến lược: Dầu khí vẫn là một trong những ngành công nghiệp mũi nhọn và cần nguồn nhân lực có trình độ cao trong việc khai thác và xử lý tài nguyên thiên nhiên. Triển vọng việc làm
Các công ty khai thác dầu khí trong nước và quốc tế. Các công ty tư vấn và kỹ thuật dầu khí, nghiên cứu các giải pháp tối ưu trong khai thác. Các côn... |
- Loss:
MatryoshkaLoss
with these parameters:{
"loss": "MultipleNegativesRankingLoss",
"matryoshka_dims": [
768,
512,
256
],
"matryoshka_weights": [
1,
1,
1
],
"n_dims_per_step": -1
}
Training Hyperparameters
Non-Default Hyperparameters
eval_strategy
: steps
per_device_train_batch_size
: 16
per_device_eval_batch_size
: 16
gradient_accumulation_steps
: 8
learning_rate
: 2e-05
num_train_epochs
: 30
lr_scheduler_type
: cosine
warmup_ratio
: 0.1
bf16
: True
tf32
: True
dataloader_drop_last
: True
dataloader_num_workers
: 8
load_best_model_at_end
: True
batch_sampler
: no_duplicates
All Hyperparameters
Click to expand
overwrite_output_dir
: False
do_predict
: False
eval_strategy
: steps
prediction_loss_only
: True
per_device_train_batch_size
: 16
per_device_eval_batch_size
: 16
per_gpu_train_batch_size
: None
per_gpu_eval_batch_size
: None
gradient_accumulation_steps
: 8
eval_accumulation_steps
: None
torch_empty_cache_steps
: None
learning_rate
: 2e-05
weight_decay
: 0.0
adam_beta1
: 0.9
adam_beta2
: 0.999
adam_epsilon
: 1e-08
max_grad_norm
: 1.0
num_train_epochs
: 30
max_steps
: -1
lr_scheduler_type
: cosine
lr_scheduler_kwargs
: {}
warmup_ratio
: 0.1
warmup_steps
: 0
log_level
: passive
log_level_replica
: warning
log_on_each_node
: True
logging_nan_inf_filter
: True
save_safetensors
: True
save_on_each_node
: False
save_only_model
: False
restore_callback_states_from_checkpoint
: False
no_cuda
: False
use_cpu
: False
use_mps_device
: False
seed
: 42
data_seed
: None
jit_mode_eval
: False
use_ipex
: False
bf16
: True
fp16
: False
fp16_opt_level
: O1
half_precision_backend
: auto
bf16_full_eval
: False
fp16_full_eval
: False
tf32
: True
local_rank
: 0
ddp_backend
: None
tpu_num_cores
: None
tpu_metrics_debug
: False
debug
: []
dataloader_drop_last
: True
dataloader_num_workers
: 8
dataloader_prefetch_factor
: None
past_index
: -1
disable_tqdm
: False
remove_unused_columns
: True
label_names
: None
load_best_model_at_end
: True
ignore_data_skip
: False
fsdp
: []
fsdp_min_num_params
: 0
fsdp_config
: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
fsdp_transformer_layer_cls_to_wrap
: None
accelerator_config
: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
deepspeed
: None
label_smoothing_factor
: 0.0
optim
: adamw_torch_fused
optim_args
: None
adafactor
: False
group_by_length
: False
length_column_name
: length
ddp_find_unused_parameters
: None
ddp_bucket_cap_mb
: None
ddp_broadcast_buffers
: False
dataloader_pin_memory
: True
dataloader_persistent_workers
: False
skip_memory_metrics
: True
use_legacy_prediction_loop
: False
push_to_hub
: False
resume_from_checkpoint
: None
hub_model_id
: None
hub_strategy
: every_save
hub_private_repo
: None
hub_always_push
: False
hub_revision
: None
gradient_checkpointing
: False
gradient_checkpointing_kwargs
: None
include_inputs_for_metrics
: False
include_for_metrics
: []
eval_do_concat_batches
: True
fp16_backend
: auto
push_to_hub_model_id
: None
push_to_hub_organization
: None
mp_parameters
:
auto_find_batch_size
: False
full_determinism
: False
torchdynamo
: None
ray_scope
: last
ddp_timeout
: 1800
torch_compile
: False
torch_compile_backend
: None
torch_compile_mode
: None
include_tokens_per_second
: False
include_num_input_tokens_seen
: False
neftune_noise_alpha
: None
optim_target_modules
: None
batch_eval_metrics
: False
eval_on_start
: False
use_liger_kernel
: False
liger_kernel_config
: None
eval_use_gather_object
: False
average_tokens_across_devices
: False
prompts
: None
batch_sampler
: no_duplicates
multi_dataset_batch_sampler
: proportional
router_mapping
: {}
learning_rate_mapping
: {}
Training Logs
Epoch |
Step |
Training Loss |
dim_768_cosine_ndcg@10 |
dim_512_cosine_ndcg@10 |
dim_256_cosine_ndcg@10 |
-1 |
-1 |
- |
0.4874 |
0.4819 |
0.4590 |
0.8696 |
10 |
2.5365 |
0.5364 |
0.5305 |
0.5085 |
1.6957 |
20 |
1.882 |
0.5868 |
0.5820 |
0.5636 |
2.5217 |
30 |
1.4659 |
0.6318 |
0.6259 |
0.6123 |
3.3478 |
40 |
1.0926 |
0.6751 |
0.6759 |
0.6643 |
4.1739 |
50 |
0.824 |
0.7087 |
0.7092 |
0.7018 |
5.0 |
60 |
0.5654 |
0.7277 |
0.7337 |
0.7312 |
5.8696 |
70 |
0.5208 |
0.7528 |
0.7605 |
0.7527 |
6.6957 |
80 |
0.4009 |
0.7785 |
0.7873 |
0.7838 |
7.5217 |
90 |
0.4109 |
0.7813 |
0.7901 |
0.7925 |
8.3478 |
100 |
0.3491 |
0.8089 |
0.8131 |
0.8127 |
9.1739 |
110 |
0.2796 |
0.8187 |
0.8263 |
0.8273 |
10.0 |
120 |
0.2451 |
0.8299 |
0.8345 |
0.8385 |
10.8696 |
130 |
0.1941 |
0.8368 |
0.8410 |
0.8459 |
11.6957 |
140 |
0.2436 |
0.8444 |
0.8520 |
0.8527 |
12.5217 |
150 |
0.2048 |
0.8508 |
0.8587 |
0.8593 |
13.3478 |
160 |
0.198 |
0.8560 |
0.8666 |
0.8676 |
14.2609 |
170 |
0.1979 |
0.8604 |
0.8709 |
0.8724 |
15.1739 |
180 |
0.205 |
0.8795 |
0.8882 |
0.8853 |
16.0 |
190 |
0.1738 |
0.8822 |
0.8913 |
0.8921 |
16.8696 |
200 |
0.1324 |
0.8794 |
0.8878 |
0.8866 |
17.6957 |
210 |
0.1413 |
0.8821 |
0.8947 |
0.8956 |
18.5217 |
220 |
0.1841 |
0.8884 |
0.9003 |
0.9022 |
19.3478 |
230 |
0.1237 |
0.8974 |
0.9050 |
0.9069 |
20.1739 |
240 |
0.1258 |
0.8985 |
0.9077 |
0.9080 |
21.0 |
250 |
0.1583 |
0.9009 |
0.9079 |
0.9055 |
21.8696 |
260 |
0.1218 |
0.9011 |
0.9071 |
0.9072 |
22.6957 |
270 |
0.1024 |
0.9027 |
0.9073 |
0.9094 |
23.5217 |
280 |
0.1229 |
0.9027 |
0.9110 |
0.9107 |
24.3478 |
290 |
0.1191 |
0.9070 |
0.9129 |
0.9124 |
25.1739 |
300 |
0.1427 |
0.9090 |
0.9145 |
0.9149 |
26.0 |
310 |
0.1162 |
0.9111 |
0.9170 |
0.9170 |
26.8696 |
320 |
0.1103 |
0.9119 |
0.9183 |
0.9179 |
27.6957 |
330 |
0.1164 |
0.9120 |
0.9189 |
0.9181 |
28.5217 |
340 |
0.1091 |
0.9129 |
0.9174 |
0.9188 |
29.3478 |
350 |
0.0935 |
0.9131 |
0.9173 |
0.9179 |
Framework Versions
- Python: 3.10.12
- Sentence Transformers: 5.1.0
- Transformers: 4.55.2
- PyTorch: 2.8.0+cu128
- Accelerate: 1.10.0
- Datasets: 4.0.0
- Tokenizers: 0.21.4
Citation
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
MatryoshkaLoss
@misc{kusupati2024matryoshka,
title={Matryoshka Representation Learning},
author={Aditya Kusupati and Gantavya Bhatt and Aniket Rege and Matthew Wallingford and Aditya Sinha and Vivek Ramanujan and William Howard-Snyder and Kaifeng Chen and Sham Kakade and Prateek Jain and Ali Farhadi},
year={2024},
eprint={2205.13147},
archivePrefix={arXiv},
primaryClass={cs.LG}
}
MultipleNegativesRankingLoss
@misc{henderson2017efficient,
title={Efficient Natural Language Response Suggestion for Smart Reply},
author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
year={2017},
eprint={1705.00652},
archivePrefix={arXiv},
primaryClass={cs.CL}
}