OpenFly

OpenFly, a platform comprising a versatile toolchain and large-scale benchmark for aerial VLN. The code is purely huggingFace-based and concise, with efficient performance.

For full details, please read our paper and see our project page.

Model Details

Model Description

Uses

OpenFly relies solely on HuggingFace Transformers 🤗, making deployment extremely easy. If your environment supports transformers >= 4.47.0, you can directly use the following code to load the model and perform inference.

Direct Use


from typing import Dict, List, Optional, Union
from pathlib import Path
import numpy as np
import torch
from PIL import Image
from transformers import LlamaTokenizerFast
from transformers import AutoConfig, AutoImageProcessor, AutoModelForVision2Seq, AutoProcessor
import os, json
from model.prismatic import PrismaticVLM
from model.overwatch import initialize_overwatch
from model.action_tokenizer import ActionTokenizer
from model.vision_backbone import DinoSigLIPViTBackbone, DinoSigLIPImageTransform
from model.llm_backbone import LLaMa2LLMBackbone
from extern.hf.configuration_prismatic import OpenFlyConfig
from extern.hf.modeling_prismatic import OpenVLAForActionPrediction
from extern.hf.processing_prismatic import PrismaticImageProcessor, PrismaticProcessor

AutoConfig.register("openvla", OpenFlyConfig)
AutoImageProcessor.register(OpenFlyConfig, PrismaticImageProcessor)
AutoProcessor.register(OpenFlyConfig, PrismaticProcessor)
AutoModelForVision2Seq.register(OpenFlyConfig, OpenVLAForActionPrediction)

model_name_or_path="IPEC-COMMUNITY/openfly-agent-7b"
processor = AutoProcessor.from_pretrained(model_name_or_path)
model = AutoModelForVision2Seq.from_pretrained(
    model_name_or_path, 
    attn_implementation="flash_attention_2",  # [Optional] Requires `flash_attn`
    torch_dtype=torch.bfloat16, 
    low_cpu_mem_usage=True, 
    trust_remote_code=True,
).to("cuda:0")

image = Image.fromarray(cv2.imread("example.png"))
prompt = "Take off, go straight pass the river"
inputs = processor(prompt, [image, image, image]).to("cuda:0", dtype=torch.bfloat16)
action = model.predict_action(**inputs, unnorm_key="vln_norm", do_sample=False)
print(action)
Downloads last month
172
Safetensors
Model size
7.54B params
Tensor type
BF16
·
Inference Providers NEW
This model isn't deployed by any Inference Provider. 🙋 Ask for provider support

Model tree for IPEC-COMMUNITY/openfly-agent-7b

Finetuned
(1)
this model

Dataset used to train IPEC-COMMUNITY/openfly-agent-7b

Collection including IPEC-COMMUNITY/openfly-agent-7b