LinigDrake2875's picture
Upload README.md with huggingface_hub
2bdbeec verified
---
base_model: OpenLLM-Ro/RoLlama3.1-8b-Instruct-2025-04-23
datasets:
- OpenLLM-Ro/ro_sft_alpaca
- OpenLLM-Ro/ro_sft_alpaca_gpt4
- OpenLLM-Ro/ro_sft_dolly
- OpenLLM-Ro/ro_sft_selfinstruct_gpt4
- OpenLLM-Ro/ro_sft_norobots
- OpenLLM-Ro/ro_sft_orca
- OpenLLM-Ro/ro_sft_camel
- OpenLLM-Ro/ro_sft_oasst
- OpenLLM-Ro/ro_sft_ultrachat
- OpenLLM-Ro/ro_sft_magpie_mt
- OpenLLM-Ro/ro_sft_magpie_reasoning
language:
- ro
license: cc-by-nc-4.0
tags:
- llama-cpp
- gguf-my-repo
model-index:
- name: OpenLLM-Ro/RoLlama3.1-8b-Instruct-2025-04-23
results:
- task:
type: text-generation
dataset:
name: RoMT-Bench
type: RoMT-Bench
metrics:
- type: Score
value: 6.43
name: Score
- type: Score
value: 6.78
name: First turn
- type: Score
value: 6.09
name: Second turn
- task:
type: text-generation
dataset:
name: RoCulturaBench
type: RoCulturaBench
metrics:
- type: Score
value: 4.28
name: Score
- task:
type: text-generation
dataset:
name: Romanian_Academic_Benchmarks
type: Romanian_Academic_Benchmarks
metrics:
- type: accuracy
value: 53.36
name: Average accuracy
- task:
type: text-generation
dataset:
name: OpenLLM-Ro/ro_arc_challenge
type: OpenLLM-Ro/ro_arc_challenge
metrics:
- type: accuracy
value: 48.97
name: Average accuracy
- type: accuracy
value: 45.24
name: 0-shot
- type: accuracy
value: 47.67
name: 1-shot
- type: accuracy
value: 49.36
name: 3-shot
- type: accuracy
value: 50.13
name: 5-shot
- type: accuracy
value: 50.81
name: 10-shot
- type: accuracy
value: 50.64
name: 25-shot
- task:
type: text-generation
dataset:
name: OpenLLM-Ro/ro_mmlu
type: OpenLLM-Ro/ro_mmlu
metrics:
- type: accuracy
value: 55.17
name: Average accuracy
- type: accuracy
value: 54.23
name: 0-shot
- type: accuracy
value: 56.36
name: 1-shot
- type: accuracy
value: 55.34
name: 3-shot
- type: accuracy
value: 54.74
name: 5-shot
- task:
type: text-generation
dataset:
name: OpenLLM-Ro/ro_winogrande
type: OpenLLM-Ro/ro_winogrande
metrics:
- type: accuracy
value: 66.52
name: Average accuracy
- type: accuracy
value: 64.96
name: 0-shot
- type: accuracy
value: 66.77
name: 1-shot
- type: accuracy
value: 67.09
name: 3-shot
- type: accuracy
value: 67.25
name: 5-shot
- task:
type: text-generation
dataset:
name: OpenLLM-Ro/ro_hellaswag
type: OpenLLM-Ro/ro_hellaswag
metrics:
- type: accuracy
value: 60.73
name: Average accuracy
- type: accuracy
value: 59.72
name: 0-shot
- type: accuracy
value: 60.3
name: 1-shot
- type: accuracy
value: 60.87
name: 3-shot
- type: accuracy
value: 61.14
name: 5-shot
- type: accuracy
value: 61.63
name: 10-shot
- task:
type: text-generation
dataset:
name: OpenLLM-Ro/ro_gsm8k
type: OpenLLM-Ro/ro_gsm8k
metrics:
- type: accuracy
value: 42.03
name: Average accuracy
- type: accuracy
value: 30.86
name: 1-shot
- type: accuracy
value: 43.9
name: 3-shot
- type: accuracy
value: 51.33
name: 5-shot
- task:
type: text-generation
dataset:
name: OpenLLM-Ro/ro_truthfulqa
type: OpenLLM-Ro/ro_truthfulqa
metrics:
- type: accuracy
value: 46.71
name: Average accuracy
- task:
type: text-generation
dataset:
name: LaRoSeDa_binary
type: LaRoSeDa_binary
metrics:
- type: macro-f1
value: 95.32
name: Average macro-f1
- type: macro-f1
value: 90.97
name: 0-shot
- type: macro-f1
value: 95.53
name: 1-shot
- type: macro-f1
value: 97.1
name: 3-shot
- type: macro-f1
value: 97.67
name: 5-shot
- task:
type: text-generation
dataset:
name: LaRoSeDa_multiclass
type: LaRoSeDa_multiclass
metrics:
- type: macro-f1
value: 60.84
name: Average macro-f1
- type: macro-f1
value: 63.2
name: 0-shot
- type: macro-f1
value: 64.47
name: 1-shot
- type: macro-f1
value: 55.88
name: 3-shot
- type: macro-f1
value: 59.8
name: 5-shot
- task:
type: text-generation
dataset:
name: WMT_EN-RO
type: WMT_EN-RO
metrics:
- type: bleu
value: 23.18
name: Average bleu
- type: bleu
value: 4.92
name: 0-shot
- type: bleu
value: 28.01
name: 1-shot
- type: bleu
value: 30.16
name: 3-shot
- type: bleu
value: 29.61
name: 5-shot
- task:
type: text-generation
dataset:
name: WMT_RO-EN
type: WMT_RO-EN
metrics:
- type: bleu
value: 25.11
name: Average bleu
- type: bleu
value: 1.43
name: 0-shot
- type: bleu
value: 24.78
name: 1-shot
- type: bleu
value: 37.31
name: 3-shot
- type: bleu
value: 36.93
name: 5-shot
- task:
type: text-generation
dataset:
name: XQuAD
type: XQuAD
metrics:
- type: exact_match
value: 10.74
name: Average exact_match
- type: f1
value: 19.75
name: Average f1
- task:
type: text-generation
dataset:
name: STS
type: STS
metrics:
- type: spearman
value: 73.53
name: Average spearman
- type: pearson
value: 74.93
name: Average pearson
- task:
type: text-generation
dataset:
name: XQuAD_EM
type: XQuAD_EM
metrics:
- type: exact_match
value: 11.18
name: 0-shot
- type: exact_match
value: 26.47
name: 1-shot
- type: exact_match
value: 3.95
name: 3-shot
- type: exact_match
value: 1.34
name: 5-shot
- task:
type: text-generation
dataset:
name: XQuAD_F1
type: XQuAD_F1
metrics:
- type: f1
value: 25.76
name: 0-shot
- type: f1
value: 39.25
name: 1-shot
- type: f1
value: 8.4
name: 3-shot
- type: f1
value: 5.58
name: 5-shot
- task:
type: text-generation
dataset:
name: STS_Spearman
type: STS_Spearman
metrics:
- type: spearman
value: 73.52
name: 1-shot
- type: spearman
value: 74.02
name: 3-shot
- type: spearman
value: 73.06
name: 5-shot
- task:
type: text-generation
dataset:
name: STS_Pearson
type: STS_Pearson
metrics:
- type: pearson
value: 75.81
name: 1-shot
- type: pearson
value: 74.54
name: 3-shot
- type: pearson
value: 74.43
name: 5-shot
---
# LinigDrake2875/RoLlama3.1-8b-Instruct-2025-04-23-Q4_K_M-GGUF
This model was converted to GGUF format from [`OpenLLM-Ro/RoLlama3.1-8b-Instruct-2025-04-23`](https://huggingface.co/OpenLLM-Ro/RoLlama3.1-8b-Instruct-2025-04-23) using llama.cpp via the ggml.ai's [GGUF-my-repo](https://huggingface.co/spaces/ggml-org/gguf-my-repo) space.
Refer to the [original model card](https://huggingface.co/OpenLLM-Ro/RoLlama3.1-8b-Instruct-2025-04-23) for more details on the model.
## Use with llama.cpp
Install llama.cpp through brew (works on Mac and Linux)
```bash
brew install llama.cpp
```
Invoke the llama.cpp server or the CLI.
### CLI:
```bash
llama-cli --hf-repo LinigDrake2875/RoLlama3.1-8b-Instruct-2025-04-23-Q4_K_M-GGUF --hf-file rollama3.1-8b-instruct-2025-04-23-q4_k_m.gguf -p "The meaning to life and the universe is"
```
### Server:
```bash
llama-server --hf-repo LinigDrake2875/RoLlama3.1-8b-Instruct-2025-04-23-Q4_K_M-GGUF --hf-file rollama3.1-8b-instruct-2025-04-23-q4_k_m.gguf -c 2048
```
Note: You can also use this checkpoint directly through the [usage steps](https://github.com/ggerganov/llama.cpp?tab=readme-ov-file#usage) listed in the Llama.cpp repo as well.
Step 1: Clone llama.cpp from GitHub.
```
git clone https://github.com/ggerganov/llama.cpp
```
Step 2: Move into the llama.cpp folder and build it with `LLAMA_CURL=1` flag along with other hardware-specific flags (for ex: LLAMA_CUDA=1 for Nvidia GPUs on Linux).
```
cd llama.cpp && LLAMA_CURL=1 make
```
Step 3: Run inference through the main binary.
```
./llama-cli --hf-repo LinigDrake2875/RoLlama3.1-8b-Instruct-2025-04-23-Q4_K_M-GGUF --hf-file rollama3.1-8b-instruct-2025-04-23-q4_k_m.gguf -p "The meaning to life and the universe is"
```
or
```
./llama-server --hf-repo LinigDrake2875/RoLlama3.1-8b-Instruct-2025-04-23-Q4_K_M-GGUF --hf-file rollama3.1-8b-instruct-2025-04-23-q4_k_m.gguf -c 2048
```