|
# DDT: Decoupled Diffusion Transformer |
|
<div style="text-align: center;"> |
|
<a href="https://arxiv.org/abs/2504.05741"><img src="https://img.shields.io/badge/arXiv-2504.05741-b31b1b.svg" alt="arXiv"></a> |
|
<a href="https://huggingface.co/papers/2504.05741"><img src="https://huggingface.co/datasets/huggingface/badges/resolve/main/paper-page-sm.svg" alt="Paper page"></a> |
|
</div> |
|
|
|
<div style="text-align: center;"> |
|
<a href="https://paperswithcode.com/sota/image-generation-on-imagenet-256x256?p=ddt-decoupled-diffusion-transformer"><img src="https://img.shields.io/endpoint.svg?url=https://paperswithcode.com/badge/ddt-decoupled-diffusion-transformer/image-generation-on-imagenet-256x256" alt="PWC"></a> |
|
|
|
<a href="https://paperswithcode.com/sota/image-generation-on-imagenet-512x512?p=ddt-decoupled-diffusion-transformer"><img src="https://img.shields.io/endpoint.svg?url=https://paperswithcode.com/badge/ddt-decoupled-diffusion-transformer/image-generation-on-imagenet-512x512" alt="PWC"></a> |
|
</div> |
|
|
|
## Introduction |
|
We decouple diffusion transformer into encoder-decoder design, and surpresingly that a **more substantial encoder yields performance improvements as model size increases**. |
|
 |
|
* We achieves **1.26 FID** on ImageNet256x256 Benchmark with DDT-XL/2(22en6de). |
|
* We achieves **1.28 FID** on ImageNet512x512 Benchmark with DDT-XL/2(22en6de). |
|
* As a byproduct, our DDT can reuse encoder among adjacent steps to accelerate inference. |
|
## Visualizations |
|
 |
|
## Checkpoints |
|
We take the off-shelf [VAE](https://huggingface.co/stabilityai/sd-vae-ft-ema) to encode image into latent space, and train the decoder with DDT. |
|
|
|
| Dataset | Model | Params | FID | HuggingFace | |
|
|-------------|-------------------|-----------|------|----------------------------------------------------------| |
|
| ImageNet256 | DDT-XL/2(22en6de) | 675M | 1.26 | [🤗](https://huggingface.co/MCG-NJU/DDT-XL-22en6de-R256) | |
|
| ImageNet512 | DDT-XL/2(22en6de) | 675M | 1.28 | [🤗](https://huggingface.co/MCG-NJU/DDT-XL-22en6de-R512) | |
|
## Online Demos |
|
Coming soon. |
|
|
|
## Usages |
|
We use ADM evaluation suite to report FID. |
|
```bash |
|
# for installation |
|
pip install -r requirements.txt |
|
``` |
|
```bash |
|
# for inference |
|
python main.py predict -c configs/repa_improved_ddt_xlen22de6_256.yaml --ckpt_path=XXX.ckpt |
|
``` |
|
|
|
```bash |
|
# for training |
|
# extract image latent (optional) |
|
python3 tools/cache_imlatent4.py |
|
# train |
|
python main.py fit -c configs/repa_improved_ddt_xlen22de6_256.yaml |
|
``` |
|
|
|
|
|
## Reference |
|
```bibtex |
|
@ARTICLE{ddt, |
|
title = "DDT: Decoupled Diffusion Transformer", |
|
author = "Wang, Shuai and Tian, Zhi and Huang, Weilin and Wang, Limin", |
|
month = apr, |
|
year = 2025, |
|
archivePrefix = "arXiv", |
|
primaryClass = "cs.CV", |
|
eprint = "2504.05741" |
|
} |
|
``` |