File size: 89,940 Bytes
7440eb8 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 |
# German base static model for sentence comparisons, RAG & classifications.
# Inspired in January 25 by Tom Aarsens: "Train 400x faster Static Embedding Models with Sentence Transformers"
# check: https://huggingface.co/blog/static-embeddings#code
# and check: https://sbert.net/docs/sentence_transformer/training_overview.html
# for training parameters, check also: https://huggingface.co/docs/transformers/en/main_classes/trainer
# First test build since May, 25th as I found the time.
# The datasets are mainly based upon german and english european table dataset training snippets
# Main idea is to use only open licensed material that can also be used commercially.
#
# This is experimental minimal EN & mainly DE only.
#
# With local prepared texts building the train/test-split takes about 3 minutes.
# Training on a GTX-2070 SUPER 8GB (with prepared training material) needs ~2h.
from timeit import default_timer as timer
import gc
import os
import random
import logging
import datasets
from datasets import load_dataset, Dataset, DatasetDict, concatenate_datasets
from sentence_transformers import (
SentenceTransformer,
SentenceTransformerTrainer,
SentenceTransformerTrainingArguments,
SentenceTransformerModelCardData,
SimilarityFunction,
)
from sentence_transformers.losses import MatryoshkaLoss, MultipleNegativesRankingLoss
from sentence_transformers.training_args import BatchSamplers, MultiDatasetBatchSamplers
from sentence_transformers.models.StaticEmbedding import StaticEmbedding
from sentence_transformers.util import paraphrase_mining
from sentence_transformers.evaluation import NanoBEIREvaluator
from transformers import AutoTokenizer # sadly no blingfire
# as Sentence Transformers uses PyTorch AND TensorFlow - I need to tune it for my system
import tensorflow as tf
import torch
## Model Version
version = '1'
sts_basename = 'sts-mrl-en-de-base'
## MULTILINGUAL bert-base (original): ~414MB model
#tokenizer_model = 'google-bert/bert-base-multilingual-uncased'
### follwing are some different tokenizers to play around with - all of them were tested and only 'dbmdz/bert-base-german-uncased' is more effective for the german language by only a size of 243MB.
## GERMAN ONLY: ~243MB model
tokenizer_model = 'dbmdz/bert-base-german-uncased'
## GERMAN ONLY: ~122MB model
#tokenizer_model = 'deepset/gelectra-base'
## GERMAN ONLY; ~243MB model
#tokenizer_model = 'deepset/gbert-base'
## MULTILINGUAL roBERTa: ~977MB model
#tokenizer_model = 'FacebookAI/xlm-roberta-base'
## ModernBert: ~197MB model – as a test for v0.05a
#tokenizer_model = 'answerdotai/ModernBERT-base'
logging.basicConfig(
format="%(asctime)s - %(message)s", datefmt="%Y-%m-%d %H:%M:%S", level=logging.INFO
)
random.seed(12)
def load_train_eval_datasets():
"""
Either load the train and eval datasets from disk or load them from the datasets library & save them to disk.
Upon saving to disk, we quit() to ensure that the datasets are not loaded into memory before training.
The order of sets here is not the same as later on in the full training/eval-sets!!!
"""
try:
train_dataset = DatasetDict.load_from_disk("base_datasets/train_dataset")
eval_dataset = DatasetDict.load_from_disk("base_datasets/eval_dataset")
return train_dataset, eval_dataset
except FileNotFoundError:
print("No prepared dataset found. Building ...")
#
# Build the datasets.
# we do the biggest thing in the beginning
print("Loading mMARCO-distilled-de-hn dataset...")
# source: https://huggingface.co/datasets/MarcGrumpyOlejak/mmarco-de-distilled-scored
# original: https://huggingface.co/datasets/unicamp-dl/mmarco
# git: https://github.com/unicamp-dl/mMARCO
# License: Apache-2.0
# distilled & filtered: 254660
# Original set without Hard Negatives unused
#mmarco_de_scored = load_dataset('MarcGrumpyOlejak/mmarco-de-distilled-scored', split="train").filter(lambda _: _['score_sts'] >= 0.26)
#mmarco_de_scored = mmarco_de_scored.select_columns(['query', 'positive', 'negative'])
#mmarco_de_scored = mmarco_de_scored.train_test_split(test_size=10000, seed=12)
#mmarco_de_scored_train_ds: Dataset = mmarco_de_scored["train"]
#mmarco_de_scored_eval_ds: Dataset = mmarco_de_scored["test"]
#
# filtered, split as/with hard negatives and remaining sentences
mmarco_de_3hn_ds = load_dataset('parquet', data_files={'mmarco-de-distilled_3hn/3_hard_negatives/*.parquet'}, split="train")
mmarco_de_3hn_ds = mmarco_de_3hn_ds.train_test_split(test_size=0.02, seed=12)
mmarco_de_3hn_train_dataset: Dataset = mmarco_de_3hn_ds["train"]
mmarco_de_3hn_eval_dataset: Dataset = mmarco_de_3hn_ds["test"]
#
mmarco_de_2hn_ds = load_dataset('parquet', data_files={'mmarco-de-distilled_3hn/2_hard_negatives/*.parquet'}, split="train")
mmarco_de_2hn_ds = mmarco_de_2hn_ds.train_test_split(test_size=0.02, seed=12)
mmarco_de_2hn_train_dataset: Dataset = mmarco_de_2hn_ds["train"]
mmarco_de_2hn_eval_dataset: Dataset = mmarco_de_2hn_ds["test"]
#
mmarco_de_1hn_ds = load_dataset('parquet', data_files={'mmarco-de-distilled_3hn/1_hard_negatives/*.parquet'}, split="train")
mmarco_de_1hn_ds = mmarco_de_1hn_ds.train_test_split(test_size=0.02, seed=12)
mmarco_de_1hn_train_dataset: Dataset = mmarco_de_1hn_ds["train"]
mmarco_de_1hn_eval_dataset: Dataset = mmarco_de_1hn_ds["test"]
#
mmarco_de_0hn_ds = load_dataset('parquet', data_files={'mmarco-de-distilled_3hn/0_hard_negatives/*.parquet'}, split="train")
mmarco_de_0hn_ds = mmarco_de_0hn_ds.train_test_split(test_size=0.02, seed=12)
mmarco_de_0hn_train_dataset: Dataset = mmarco_de_0hn_ds["train"]
mmarco_de_0hn_eval_dataset: Dataset = mmarco_de_0hn_ds["test"]
print("Loaded mMARCO-distilled-de-hn dataset.")
#
print("Loading local prepared wikipedia-22-12-de datasets...")
# (need to upload the local version to build it)
# check: load_dataset('deutsche-telekom/wikipedia-22-12-de-dpr')
# License: MIT
# Copyright (c) 2023-2024 Philip May, Deutsche Telekom AG
# Licensed under the MIT License (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License by reviewing the file [LICENSE](https://github.com/telekom/mltb2/blob/main/LICENSE) in the repository.
# version without hard negatives not loaded
# reversed!!! deactivate hard negatives!
name_local = 'wikipedia-22-12-de-scored'
wp_2212_de_ds = DatasetDict.load_from_disk(f'{name_local}/{name_local}.hf')
wp_2212_de_train_dataset: Dataset = wp_2212_de_ds["train"].select_columns(['question', 'context'])
wp_2212_de_eval_dataset: Dataset = wp_2212_de_ds["test"].select_columns(['question', 'context'])
#
# instead load the hard negative version
#name_local = 'wikipedia-22-12-de_hn'
#wp_2212_de_train_dataset: Dataset = load_dataset('parquet', data_files={f'{name_local}/3_hard_negatives/train-*.parquet'}, split="train")
#wp_2212_de_eval_dataset: Dataset = load_dataset('parquet', data_files={f'{name_local}/3_hard_negatives/test-*.parquet'}, split="train")
#wp_2212_de_0_train_dataset: Dataset = load_dataset('parquet', data_files={f'{name_local}/0_hard_negatives/train-*.parquet'}, split="train")
#wp_2212_de_0_eval_dataset: Dataset = load_dataset('parquet', data_files={f'{name_local}/0_hard_negatives/test-*.parquet'}, split="train")
print("Loaded prepared full wikipedia-22-12-de dataset...")
#
print("Loading swim-ir-monolingual-de-scored dataset...")
# source: https://huggingface.co/datasets/MarcGrumpyOlejak/swim-ir-monolingual-de-scored
# original: https://huggingface.co/datasets/nthakur/swim-ir-monolingual
# entries: ~447000
# filtered: 356552
# combined: 713104
# License: CC-BY-SA-4.0
# Original set without Hard Negatives unsed
#swim_ir_de_ds = load_dataset("MarcGrumpyOlejak/swim-ir-monolingual-de-scored", split="train").filter(lambda _: _['score_sts'] >= 0.26 and _['score_sts'] < 0.99 and _['query'] != '')
#swim_ir_de_key_ds = swim_ir_de_ds.select_columns(['text', 'title'])
#swim_ir_de_key_ds = swim_ir_de_key_ds.rename_columns({'text': 'sentence1', 'title': 'sentence2'})
#swim_ir_de_ds = swim_ir_de_ds.select_columns(['query', 'text'])
#swim_ir_de_ds = swim_ir_de_ds.rename_columns({'query': 'sentence1', 'text': 'sentence2'})
#swim_ir_de_ds = concatenate_datasets([swim_ir_de_ds, swim_ir_de_key_ds])
#swim_ir_de_ds = swim_ir_de_ds.train_test_split(test_size=10000, seed=12)
#swim_ir_de_train_dataset: Dataset = swim_ir_de_ds["train"]
#swim_ir_de_eval_dataset: Dataset = swim_ir_de_ds["test"]
#
# filtered, split and with hard negatives and remaining sentences
swim_ir_de_ds = load_dataset('parquet', data_files={'swim-ir-monolingual-de_3hn/0_hard_negatives/*.parquet'}, split="train")
swim_ir_de_ds = swim_ir_de_ds.train_test_split(test_size=0.02, seed=12)
swim_ir_de_train_dataset: Dataset = swim_ir_de_ds["train"]
swim_ir_de_eval_dataset: Dataset = swim_ir_de_ds["test"]
swim_ir_de_3hn_ds = load_dataset('parquet', data_files={'swim-ir-monolingual-de_3hn/3_hard_negatives/*.parquet'}, split="train")
swim_ir_de_3hn_ds = swim_ir_de_3hn_ds.train_test_split(test_size=0.02, seed=12)
swim_ir_de_3hn_train_dataset: Dataset = swim_ir_de_3hn_ds["train"]
swim_ir_de_3hn_eval_dataset: Dataset = swim_ir_de_3hn_ds["test"]
#
swim_ir_de_title_ds = load_dataset('parquet', data_files={'swim-ir-monolingual-titles-de_3hn/0_hard_negatives/*.parquet'}, split="train")
swim_ir_de_title_3hn_ds = load_dataset('parquet', data_files={'swim-ir-monolingual-titles-de_3hn/3_hard_negatives/*.parquet'}, split="train")
swim_ir_de_title_ds = swim_ir_de_title_ds.train_test_split(test_size=0.02, seed=12)
swim_ir_de_title_3hn_ds = swim_ir_de_title_3hn_ds.train_test_split(test_size=0.02, seed=12)
swim_ir_de_title_train_dataset: Dataset = swim_ir_de_title_ds['train']
swim_ir_de_title_eval_dataset: Dataset = swim_ir_de_title_ds["test"]
swim_ir_de_title_3hn_train_dataset: Dataset = swim_ir_de_title_3hn_ds['train']
swim_ir_de_title_3hn_eval_dataset: Dataset = swim_ir_de_title_3hn_ds['test']
print("Loaded swim-ir-monolingual-de-scored dataset.")
#
print("Loading avemio_triples dataset...")
# source: https://huggingface.co/datasets/avemio/German-RAG-EMBEDDING-TRIPLES-HESSIAN-AI
# entries: 294234
# License: Apache-2.0
avemio_triples_dataset = load_dataset("avemio/German-RAG-EMBEDDING-TRIPLES-HESSIAN-AI", split="train")
avemio_triples_dataset_dict = avemio_triples_dataset.train_test_split(test_size=10000, seed=12)
avemio_triples_train_dataset: Dataset = avemio_triples_dataset_dict["train"]
avemio_triples_eval_dataset: Dataset = avemio_triples_dataset_dict["test"]
print("Loaded avemio_triples dataset.")
#
print("Loading avemio_pairs-hn dataset...")
# source: https://huggingface.co/datasets/avemio/German-RAG-EMBEDDING-PAIRS-HESSIAN-AI
# entries: 1036940
# License: Apache-2.0
# Original dataset unused
#avemio_pairs_dataset = load_dataset("avemio/German-RAG-EMBEDDING-PAIRS-HESSIAN-AI", split="train")
#avemio_pairs_dataset_dict = avemio_pairs_dataset.train_test_split(test_size=10000, seed=12)
#avemio_pairs_train_dataset: Dataset = avemio_pairs_dataset_dict["train"]
#avemio_pairs_eval_dataset: Dataset = avemio_pairs_dataset_dict["test"]
#
# filtered, split and with hard negatives and remaining sentences
avemio_pairs_3hn_ds = load_dataset('parquet', data_files={'German-RAG-EMBEDDING-PAIRS-HESSIAN-AI-3hn-350_3hn/3_hard_negatives/*.parquet', 'German-RAG-EMBEDDING-PAIRS-HESSIAN-AI-3hn-600_3hn/3_hard_negatives/*.parquet', 'German-RAG-EMBEDDING-PAIRS-HESSIAN-AI-3hn-600plus_3hn/3_hard_negatives/*.parquet',}, split="train")
avemio_pairs_3hn_ds = avemio_pairs_3hn_ds.train_test_split(test_size=10000, seed=12)
avemio_pairs_3hn_train_ds: Dataset = avemio_pairs_3hn_ds["train"]
avemio_pairs_3hn_eval_ds: Dataset = avemio_pairs_3hn_ds["test"]
del avemio_pairs_3hn_ds
#
avemio_pairs_0hn_ds = load_dataset('parquet', data_files={'German-RAG-EMBEDDING-PAIRS-HESSIAN-AI-3hn-350_3hn/0_hard_negatives/*.parquet', 'German-RAG-EMBEDDING-PAIRS-HESSIAN-AI-3hn-600_3hn/0_hard_negatives/*.parquet', 'German-RAG-EMBEDDING-PAIRS-HESSIAN-AI-3hn-600plus_3hn/0_hard_negatives/*.parquet',}, split="train")
avemio_pairs_0hn_ds = avemio_pairs_0hn_ds.train_test_split(test_size=10000, seed=12)
avemio_pairs_0hn_train_ds: Dataset = avemio_pairs_0hn_ds["train"]
avemio_pairs_0hn_eval_ds: Dataset = avemio_pairs_0hn_ds["test"]
del avemio_pairs_0hn_ds
print("Loaded avemio_pairs-hn dataset.")
#
print("Loading nq_german-hn dataset...")
# source: https://huggingface.co/datasets/oliverguhr/natural-questions-german
# entries: 100231
# original source: https://ai.google.com/research/NaturalQuestions
# License: cc-by-sa-3.0
# without hard negatives but unused
#nq_german_dataset = load_dataset("oliverguhr/natural-questions-german", split="train").select_columns(['query_de', 'answer_de'])
#nq_german_dataset_dict = nq_german_dataset.train_test_split(test_size=0.02, seed=12)
#nq_german_train_dataset: Dataset = nq_german_dataset_dict["train"]
#nq_german_eval_dataset: Dataset = nq_german_dataset_dict["test"]
#
# filtered, split and with hard negatives and remaining sentences
nq_german_en_de_a_3hn_ds = load_dataset('parquet', data_files={'natural-questions-german-en_de-a-sts_3hn/3_hard_negatives/*.parquet'}, split="train")
nq_german_en_de_a_3hn_ds = nq_german_en_de_a_3hn_ds.train_test_split(test_size=0.02, seed=12)
nq_german_en_de_a_3hn_train_ds: Dataset = nq_german_en_de_a_3hn_ds['train']
nq_german_en_de_a_3hn_eval_ds: Dataset = nq_german_en_de_a_3hn_ds['test']
#
nq_german_en_de_3hn_ds = load_dataset('parquet', data_files={'natural-questions-german-en_de-sts_3hn/3_hard_negatives/*.parquet'}, split="train")
nq_german_en_de_3hn_ds = nq_german_en_de_3hn_ds.train_test_split(test_size=0.02, seed=12)
nq_german_en_de_3hn_train_ds: Dataset = nq_german_en_de_3hn_ds['train']
nq_german_en_de_3hn_eval_ds: Dataset = nq_german_en_de_3hn_ds['test']
#
nq_german_3hn_ds = load_dataset('parquet', data_files={'natural-questions-german-sts_3hn/3_hard_negatives/*.parquet'}, split="train")
nq_german_3hn_ds = nq_german_3hn_ds.train_test_split(test_size=0.02, seed=12)
nq_german_3hn_train_ds: Dataset = nq_german_3hn_ds['train']
nq_german_3hn_eval_ds: Dataset = nq_german_3hn_ds['test']
#
nq_german_1hn_ds = load_dataset('parquet', data_files={'natural-questions-german-sts_3hn/1_hard_negatives/*.parquet'}, split="train")
nq_german_1hn_ds = nq_german_1hn_ds.train_test_split(test_size=0.02, seed=12)
nq_german_1hn_train_ds: Dataset = nq_german_1hn_ds['train']
nq_german_1hn_eval_ds: Dataset = nq_german_1hn_ds['test']
print("Loaded nq_german-hn dataset.")
#
print("Loading german-oasst1-qa-format-scored dataset...")
# source: https://huggingface.co/datasets/MarcGrumpyOlejak/german-oasst1-qa-format-scored
# original: https://huggingface.co/datasets/AgentWaller/german-oasst1-qa-format
# entries: ~9800
# License: apache-2.0
#german_oasst1 = load_dataset("MarcGrumpyOlejak/german-oasst1-qa-format-scored").filter(lambda _: _['score_sts'] >= 0.16 and _['score_sts'] < 0.99)
#german_oasst1_train_dataset: Dataset = german_oasst1["train"].select_columns(['input', 'output'])
#german_oasst1_eval_dataset: Dataset = german_oasst1['validation'].select_columns(['input', 'output'])
#
name_local = 'german-oasst1-qa-format-hn'
german_oasst1_hn_train_dataset: Dataset = load_dataset('parquet', data_files={f'{name_local}/3_hard_negatives/train-*.parquet'}, split="train")
german_oasst1_hn_eval_dataset: Dataset = load_dataset('parquet', data_files={f'{name_local}/3_hard_negatives/test-*.parquet'}, split="train")
print("Loaded german-oasst1-qa-format-scored dataset.")
#
print("Loading germanrag-scored dataset...")
# source: https://huggingface.co/datasets/MarcGrumpyOlejak/germanrag-scored
# german original: https://huggingface.co/datasets/DiscoResearch/germanrag
# original: https://huggingface.co/datasets/deepset/germandpr
# entries: ~3300
# filtered & modified: 4556
# License: cc-by-4.0
# Hint: one could 'refilter' the 'contexts' down to the selected 'answer' in 'positive_ctx_idx' and use the other answers as hard negatives.
def list_to_string(_):
_['contexts'] = ' '.join(_['contexts'])
return _
germanrag_short = load_dataset("MarcGrumpyOlejak/germanrag-scored", split='train').filter(lambda _: _['score_sts'] >= 0.16 and _['score_sts'] < 0.98 and _['positive_ctx_idx'] != -1)
germanrag_context = germanrag_short.select_columns(['answer', 'contexts'])
germanrag_context = germanrag_context.map(list_to_string)
germanrag_context = germanrag_context.rename_columns({'answer': 'sentence1', 'contexts': 'sentence2'})
germanrag_short = germanrag_short.select_columns(['question', 'answer'])
germanrag_short = germanrag_short.rename_columns({'question': 'sentence1', 'answer': 'sentence2'})
germanrag_short = concatenate_datasets([germanrag_short, germanrag_context])
germanrag_short = germanrag_short.train_test_split(test_size=0.02, seed=12)
germanrag_short_train_dataset: Dataset = germanrag_short["train"]
germanrag_short_eval_dataset: Dataset = germanrag_short["test"]
print("Loaded germanrag dataset.")
#
print("Loading slimorca_dedup_german_experimental-scored dataset...")
# source: https://huggingface.co/datasets/MarcGrumpyOlejak/slimorca_dedup_german_experimental-scored
# german original: https://huggingface.co/datasets/jphme/slimorca_dedup_german_experimental
# original: https://huggingface.co/datasets/Open-Orca/SlimOrca-Dedup
# entries: ~322000
# filtered: 305406
# License: MIT
# Original set without Hard Negatives unused
#slimorca_dedup_german = load_dataset("MarcGrumpyOlejak/slimorca_dedup_german_experimental-scored").filter(lambda _: _['score_sts'] >= 0.16 and _['score_sts'] < 0.98)
#slimorca_dedup_german = slimorca_dedup_german.select_columns(['instruction', 'response'])
#slimorca_dedup_german = slimorca_dedup_german['train'].train_test_split(test_size=0.02, seed=12)
#slimorca_dedup_german_train_dataset: Dataset = slimorca_dedup_german["train"]
#slimorca_dedup_german_eval_dataset: Dataset = slimorca_dedup_german["test"]
#
# FILTERED, SPLIT AND WITH HARD NEGATIVES
slimorca_dedup_3hn_ds = load_dataset('parquet', data_files={'slimorca_dedup_german_experimental-sts-negatives_3hn/3_hard_negatives/*.parquet'}, split="train")
slimorca_dedup_3hn_ds = slimorca_dedup_3hn_ds.train_test_split(test_size=0.02, seed=12)
slimorca_dedup_3hn_train_ds: Dataset = slimorca_dedup_3hn_ds['train']
slimorca_dedup_3hn_eval_ds: Dataset = slimorca_dedup_3hn_ds['test']
#
slimorca_dedup_2hn_ds = load_dataset('parquet', data_files={'slimorca_dedup_german_experimental-sts-negatives_3hn/2_hard_negatives/*.parquet'}, split="train")
slimorca_dedup_2hn_ds = slimorca_dedup_2hn_ds.train_test_split(test_size=0.02, seed=12)
slimorca_dedup_2hn_train_ds: Dataset = slimorca_dedup_2hn_ds['train']
slimorca_dedup_2hn_eval_ds: Dataset = slimorca_dedup_2hn_ds['test']
#
slimorca_dedup_1hn_ds = load_dataset('parquet', data_files={'slimorca_dedup_german_experimental-sts-negatives_3hn/1_hard_negatives/*.parquet'}, split="train")
slimorca_dedup_1hn_ds = slimorca_dedup_1hn_ds.train_test_split(test_size=0.02, seed=12)
slimorca_dedup_1hn_train_ds: Dataset = slimorca_dedup_1hn_ds['train']
slimorca_dedup_1hn_eval_ds: Dataset = slimorca_dedup_1hn_ds['test']
#
slimorca_dedup_0hn_ds = load_dataset('parquet', data_files={'slimorca_dedup_german_experimental-sts-negatives_3hn/0_hard_negatives/*.parquet'}, split="train")
slimorca_dedup_0hn_ds = slimorca_dedup_0hn_ds.train_test_split(test_size=0.02, seed=12)
slimorca_dedup_0hn_train_ds: Dataset = slimorca_dedup_0hn_ds['train']
slimorca_dedup_0hn_eval_ds: Dataset = slimorca_dedup_0hn_ds['test']
print("Loaded slimorca_dedup_german_experimental-scored dataset.")
#
print("Loading gpt-4-self-instruct-german-scored dataset...")
# source: https://huggingface.co/datasets/MarcGrumpyOlejak/gpt-4-self-instruct-german-scored
# original: https://huggingface.co/datasets/CausalLM/GPT-4-Self-Instruct-German
# entries: ~10000
# filtered: 9776
# License: CC-BY-4.0
#german_gpt4 = load_dataset("MarcGrumpyOlejak/gpt-4-self-instruct-german-scored").filter(lambda _: _['score_sts'] >= 0.16 and _['score_sts'] < 0.98).select_columns(['instruction', 'output'])
#german_gpt4 = german_gpt4['train'].train_test_split(test_size=0.02, seed=12)
#german_gpt4_train_dataset: Dataset = german_gpt4["train"]
#german_gpt4_eval_dataset: Dataset = german_gpt4["test"]
#
name_local = 'gpt-4-self-instruct-german-hn'
german_gpt4 = load_dataset('parquet', data_files={f'{name_local}/3_hard_negatives/train-*.parquet'}, split="train").train_test_split(test_size=0.02, seed=12)
german_gpt4_3hn_train_dataset: Dataset = german_gpt4["train"]
german_gpt4_3hn_eval_dataset: Dataset = german_gpt4["test"]
print("Loaded GPT-4-Self-Instruct-German dataset.")
#
print("Loading ultradistil-intel-orca-dpo-de-scored dataset...")
# source: https://huggingface.co/datasets/MarcGrumpyOlejak/ultradistil-intel-orca-dpo-de-scored
# original: https://huggingface.co/datasets/aari1995/ultradistil-intel-orca-dpo-de
# entries: ~6000
# filtered: ~5547
# License: apache-2.0
german_orca_dpo_ds = load_dataset("MarcGrumpyOlejak/ultradistil-intel-orca-dpo-de-scored").filter(lambda _: _['score_sts'] >= 0.16 and _['score_sts'] < 0.98)
german_orca_dpo_ds = german_orca_dpo_ds.select_columns(['input', 'chosen', 'rejected'])
german_orca_dpo_ds = german_orca_dpo_ds['train'].train_test_split(test_size=0.02, seed=12)
german_orca_dpo_train_dataset: Dataset = german_orca_dpo_ds["train"]
german_orca_dpo_eval_dataset: Dataset = german_orca_dpo_ds["test"]
print("Loaded ultradistil-intel-orca-dpo-de-scored dataset.")
#
#scored version of alpaca-gpt4_de-scored
print("Loading alpaca-gpt4_de-scored dataset...")
# source: https://huggingface.co/datasets/MarcGrumpyOlejak/alpaca-gpt4_de-scored
# german original: https://huggingface.co/datasets/mayflowergmbh/alpaca-gpt4_de
# original: https://huggingface.co/datasets/FreedomIntelligence/alpaca-gpt4-deutsch
# entries: ~50000
# filtered ~44845
# License: apache-2.0
# Original unused
#alpaca_gpt4_de_ds = load_dataset("MarcGrumpyOlejak/alpaca-gpt4_de-scored").filter(lambda _: _['score_sts'] >= 0.16 and _['score_sts'] < 0.94)
#alpaca_gpt4_de_ds = alpaca_gpt4_de_ds.select_columns(['instruction', 'output'])
#alpaca_gpt4_de_ds = alpaca_gpt4_de_ds['train'].train_test_split(test_size=0.02, seed=12)
#alpaca_gpt4_de_train_dataset: Dataset = alpaca_gpt4_de_ds["train"]
#alpaca_gpt4_de_eval_dataset: Dataset = alpaca_gpt4_de_ds["test"]
# filtered and hard negatives
alpaca_gpt4_de_3hn_ds = load_dataset('parquet', data_files={'alpaca-gpt4_de_3hn/3_hard_negatives/*.parquet'}, split="train").train_test_split(test_size=0.02, seed=12)
alpaca_gpt4_de_3hn_train_dataset: Dataset = alpaca_gpt4_de_3hn_ds['train']
alpaca_gpt4_de_3hn_eval_dataset: Dataset = alpaca_gpt4_de_3hn_ds['test']
alpaca_gpt4_de_0hn_ds = load_dataset('parquet', data_files={'alpaca-gpt4_de_3hn/0_hard_negatives/*.parquet'}, split="train").train_test_split(test_size=0.02, seed=12)
alpaca_gpt4_de_0hn_train_dataset: Dataset = alpaca_gpt4_de_0hn_ds['train']
alpaca_gpt4_de_0hn_eval_dataset: Dataset = alpaca_gpt4_de_0hn_ds['test']
print("Loaded alpaca-gpt4_de dataset.")
#
print("Loading DOLLY-15k (en-de) dataset...")
# source: https://huggingface.co/datasets/argilla/databricks-dolly-15k-curated-multilingual
# entries: ~15000
# License: cc-by-sa-3.0
# Original combined merged dataset unsused
#db_dolly = load_dataset("argilla/databricks-dolly-15k-curated-multilingual", split="de")
#db_dolly_en_de_inststruction = db_dolly.select_columns(['instruction_original_en', 'instruction']).filter(lambda _: _['instruction_original_en'] != "" and _['instruction'] != '')
#db_dolly_en_de_inststruction = db_dolly_en_de_inststruction.rename_columns({'instruction_original_en': 'sentence1', 'instruction': 'sentence2'})
#db_dolly_en_de_context = db_dolly.select_columns(['context_original_en', 'context']).filter(lambda _: _['context_original_en'] != "" and _['context'] != '')
#db_dolly_en_de_context = db_dolly_en_de_context.rename_columns({'context_original_en': 'sentence1', 'context': 'sentence2'})
#db_dolly_en_de_response = db_dolly.select_columns(['response_original_en', 'response']).filter(lambda _: _['response_original_en'] != "" and _['response'] != '')
#db_dolly_en_de_response = db_dolly_en_de_response.rename_columns({'response_original_en': 'sentence1', 'response': 'sentence2'})
#db_dolly_qa_de = db_dolly.select_columns(['instruction', 'response']).filter(lambda _: _['instruction'] != "" and _['response'] != '')
#db_dolly_qa_de = db_dolly_qa_de.rename_columns({'instruction': 'sentence1', 'response': 'sentence2'})
#db_dolly_qcontext_de = db_dolly.select_columns(['response', 'context']).filter(lambda _: _['response'] != "" and _['context'] != '')
#db_dolly_qcontext_de = db_dolly_qcontext_de.rename_columns({'response': 'sentence1', 'context': 'sentence2'})
#db_dolly_contextq_de = db_dolly.select_columns(['context', 'instruction']).filter(lambda _: _['context'] != "" and _['instruction'] != '')
#db_dolly_contextq_de = db_dolly_contextq_de.rename_columns({'context': 'sentence1', 'instruction': 'sentence2'})
# concat all small tables
#db_dolly = concatenate_datasets([db_dolly_en_de_inststruction, db_dolly_en_de_context, db_dolly_en_de_response, db_dolly_qa_de, db_dolly_qcontext_de, db_dolly_contextq_de])
#db_dolly_ds = db_dolly.train_test_split(test_size=0.02, seed=12)
#db_dolly_train_dataset: Dataset = db_dolly_ds["train"]
#db_dolly_eval_dataset: Dataset = db_dolly_ds["test"]
#
# hard negative versions and remaining sentences
dolly_context_de_3hn_ds = load_dataset('parquet', data_files={'databricks-dolly-15k-curated-de/context-de-hn/3_hard_negatives/*.parquet'}, split="train").train_test_split(test_size=0.02, seed=12)
dolly_context_de_3hn_train_ds: Dataset = dolly_context_de_3hn_ds['train']
dolly_context_de_3hn_eval_ds: Dataset = dolly_context_de_3hn_ds['test']
dolly_context_de_0hn_ds = load_dataset('parquet', data_files={'databricks-dolly-15k-curated-de/context-de-hn/0_hard_negatives/*.parquet'}, split="train").train_test_split(test_size=0.02, seed=12)
dolly_context_de_0hn_train_ds: Dataset = dolly_context_de_0hn_ds['train']
dolly_context_de_0hn_eval_ds: Dataset = dolly_context_de_0hn_ds['test']
dolly_context_ende_3hn_ds = load_dataset('parquet', data_files={'databricks-dolly-15k-curated-de/context-en_de-hn/3_hard_negatives/*.parquet'}, split="train").train_test_split(test_size=0.02, seed=12)
dolly_context_ende_3hn_train_ds: Dataset = dolly_context_ende_3hn_ds['train']
dolly_context_ende_3hn_eval_ds: Dataset = dolly_context_ende_3hn_ds['test']
# the next set is empty :D
#dolly_context_ende_0hn_ds = load_dataset('parquet', data_files={'databricks-dolly-15k-curated-de/context-en_de-hn/0_hard_negatives/*.parquet'}, split="train").train_test_split(test_size=0.02, seed=12)
dolly_instructions_de_3hn_ds = load_dataset('parquet', data_files={'databricks-dolly-15k-curated-de/instructions-de-hn/3_hard_negatives/*.parquet'}, split="train").train_test_split(test_size=0.02, seed=12)
dolly_instructions_de_3hn_train_ds: Dataset = dolly_instructions_de_3hn_ds['train']
dolly_instructions_de_3hn_eval_ds: Dataset = dolly_instructions_de_3hn_ds['test']
dolly_instructions_de_0hn_ds = load_dataset('parquet', data_files={'databricks-dolly-15k-curated-de/instructions-de-hn/0_hard_negatives/*.parquet'}, split="train").train_test_split(test_size=0.02, seed=12)
dolly_instructions_de_0hn_train_ds: Dataset = dolly_instructions_de_0hn_ds['train']
dolly_instructions_de_0hn_eval_ds: Dataset = dolly_instructions_de_0hn_ds['test']
dolly_instructions_ende_3hn_ds = load_dataset('parquet', data_files={'databricks-dolly-15k-curated-de/instructions-en_de-hn/3_hard_negatives/*.parquet'}, split="train").train_test_split(test_size=0.02, seed=12)
dolly_instructions_ende_3hn_train_ds: Dataset = dolly_instructions_ende_3hn_ds['train']
dolly_instructions_ende_3hn_eval_ds: Dataset = dolly_instructions_ende_3hn_ds['test']
dolly_instructions_ende_0hn_ds = load_dataset('parquet', data_files={'databricks-dolly-15k-curated-de/instructions-en_de-hn/0_hard_negatives/*.parquet'}, split="train").train_test_split(test_size=0.02, seed=12)
dolly_instructions_ende_0hn_train_ds: Dataset = dolly_instructions_ende_0hn_ds['train']
dolly_instructions_ende_0hn_eval_ds: Dataset = dolly_instructions_ende_0hn_ds['test']
dolly_responses_de_3hn_ds = load_dataset('parquet', data_files={'databricks-dolly-15k-curated-de/response-de-hn/3_hard_negatives/*.parquet'}, split="train").train_test_split(test_size=0.02, seed=12)
dolly_responses_de_3hn_train_ds: Dataset = dolly_responses_de_3hn_ds['train']
dolly_responses_de_3hn_eval_ds: Dataset = dolly_responses_de_3hn_ds['test']
dolly_responses_de_0hn_ds = load_dataset('parquet', data_files={'databricks-dolly-15k-curated-de/response-de-hn/0_hard_negatives/*.parquet'}, split="train").train_test_split(test_size=0.02, seed=12)
dolly_responses_de_0hn_train_ds: Dataset = dolly_responses_de_0hn_ds['train']
dolly_responses_de_0hn_eval_ds: Dataset = dolly_responses_de_0hn_ds['test']
dolly_responses_ende_3hn_ds = load_dataset('parquet', data_files={'databricks-dolly-15k-curated-de/response-en_de-hn/3_hard_negatives/*.parquet'}, split="train").train_test_split(test_size=0.02, seed=12)
dolly_responses_ende_3hn_train_ds: Dataset = dolly_responses_ende_3hn_ds['train']
dolly_responses_ende_3hn_eval_ds: Dataset = dolly_responses_ende_3hn_ds['test']
dolly_responses_ende_0hn_ds = load_dataset('parquet', data_files={'databricks-dolly-15k-curated-de/response-en_de-hn/0_hard_negatives/*.parquet'}, split="train").train_test_split(test_size=0.02, seed=12)
dolly_responses_ende_0hn_train_ds: Dataset = dolly_responses_ende_0hn_ds['train']
dolly_responses_ende_0hn_eval_ds: Dataset = dolly_responses_ende_0hn_ds['test']
print("Loaded DOLLY-15k (en-de) dataset.")
#
print("Loading 'saf-legal_domain_german' dataset...")
# source: https://huggingface.co/datasets/Short-Answer-Feedback/saf_legal_domain_german
# License: CC-BY-4.0
# entries: ~1600
# filtered: ~1100 (score >= 0.75) and recombined
saf_legal_de_train = load_dataset("Short-Answer-Feedback/saf_legal_domain_german", split="train").filter(lambda _: _['score'] >= 0.75)
saf_legal_de_qa_train = saf_legal_de_train.select_columns(['question', 'provided_answer']).rename_columns({'question': 'sentence1', 'provided_answer': 'sentence2'})
saf_legal_de_a_train = saf_legal_de_train.select_columns(['provided_answer', 'reference_answer']).rename_columns({'provided_answer': 'sentence1', 'reference_answer': 'sentence2'})
saf_legal_de_train_ds: Dataset = concatenate_datasets([saf_legal_de_qa_train, saf_legal_de_a_train])
# Loading & Preparing validation set
saf_legal_de_eval = load_dataset("Short-Answer-Feedback/saf_legal_domain_german", split="validation").filter(lambda _: _['score'] >= 0.75)
saf_legal_de_qa_eval = saf_legal_de_eval.select_columns(['question', 'provided_answer']).rename_columns({'question': 'sentence1', 'provided_answer': 'sentence2'})
saf_legal_de_a_eval = saf_legal_de_eval.select_columns(['provided_answer', 'reference_answer']).rename_columns({'provided_answer': 'sentence1', 'reference_answer': 'sentence2'})
saf_legal_de_eval_ds: Dataset = concatenate_datasets([saf_legal_de_qa_eval, saf_legal_de_a_eval])
print("Loaded 'saf-legal_domain_german' dataset.")
#
print("Loading GLS dataset...")
# German Legal Sentences (GLS)
# source: https://huggingface.co/datasets/lavis-nlp/german_legal_sentences
# https://lavis-nlp.github.io/german_legal_sentences/
# uses "custom code": https://huggingface.co/datasets/lavis-nlp/german_legal_sentences/blob/main/german_legal_sentences.py
# License: MIT - see https://github.com/lavis-nlp/GerDaLIR
# Original License: https://github.com/openlegaldata/oldp#MIT-1-ov-file
# interesting fields: query.text, related.text
# entries: 1404271
#
# Original unused
#gls_pairs_dataset_dict = load_dataset("lavis-nlp/german_legal_sentences", "pairs").select_columns(['query.text', 'related.text'])
#gls_pairs_train_dataset: Dataset = gls_pairs_dataset_dict["train"]
#gls_pairs_eval_dataset: Dataset = gls_pairs_dataset_dict["validation"]
#
# Distilled and hard mined negatives
gls_3hn = load_dataset('parquet', data_files={'german_legal_sentences_dist_3hn/3_hard_negatives/*.parquet'})['train'].train_test_split(test_size=0.02, seed=12)
gls_3hn_train_dataset: Dataset = gls_3hn['train']
gls_3hn_eval_dataset: Dataset = gls_3hn['test']
gls_2hn = load_dataset('parquet', data_files={'german_legal_sentences_dist_3hn/2_hard_negatives/*.parquet'})['train'].train_test_split(test_size=0.02, seed=12)
gls_2hn_train_dataset: Dataset = gls_2hn['train']
gls_2hn_eval_dataset: Dataset = gls_2hn['test']
gls_1hn = load_dataset('parquet', data_files={'german_legal_sentences_dist_3hn/1_hard_negatives/*.parquet'})['train'].train_test_split(test_size=0.02, seed=12)
gls_1hn_train_dataset: Dataset = gls_1hn['train']
gls_1hn_eval_dataset: Dataset = gls_1hn['test']
gls_0hn = load_dataset('parquet', data_files={'german_legal_sentences_dist_3hn/0_hard_negatives/*.parquet'})['train'].train_test_split(test_size=0.02, seed=12)
gls_0hn_train_dataset: Dataset = gls_0hn['train']
gls_0hn_eval_dataset: Dataset = gls_0hn['test']
print("Loaded GLS dataset.")
#
print("Loading europarl EN-DE dataset...")
# source: https://huggingface.co/datasets/sentence-transformers/parallel-sentences-europarl
# original: https://opus.nlpl.eu/Europarl/corpus/version/Europarl
# Info: https://opus.nlpl.eu/legacy/LREC2012.txt
# entries: ~1.9m
#europarl_dataset = load_dataset("sentence-transformers/parallel-sentences-europarl", "en-de", split="train")
#europarl_dataset_dict = europarl_dataset.train_test_split(test_size=10000, seed=12)
#europarl_train_dataset: Dataset = europarl_dataset_dict["train"]
#europarl_eval_dataset: Dataset = europarl_dataset_dict["test"]
#
# filtered and 3 hard negatives and 0 negatives
europarl_dataset_3hn = load_dataset('parquet', data_files={'parallel-sentences-europarl-redux_3hn/3_hard_negatives/*.parquet'})['train'].train_test_split(test_size=10000, seed=12)
europarl_3hn_train_dataset: Dataset = europarl_dataset_3hn["train"]
europarl_3hn_eval_dataset: Dataset = europarl_dataset_3hn["test"]
#
europarl_dataset_0hn = load_dataset('parquet', data_files={'parallel-sentences-europarl-redux_3hn/0_hard_negatives/*.parquet'})['train'].train_test_split(test_size=0.02, seed=12)
europarl_0hn_train_dataset: Dataset = europarl_dataset_0hn["train"]
europarl_0hn_eval_dataset: Dataset = europarl_dataset_0hn["test"]
print("Loaded europarl EN-DE dataset.")
#
print("Loading tatoeba EN-DE dataset...")
# source: https://huggingface.co/datasets/sentence-transformers/parallel-sentences-tatoeba
# original: https://tatoeba.org/
# entries: ~330k
#tatoeba_dataset = load_dataset("sentence-transformers/parallel-sentences-tatoeba", "en-de", split="train")
#tatoeba_dataset_dict = tatoeba_dataset.train_test_split(test_size=10000, seed=12)
#tatoeba_train_dataset: Dataset = tatoeba_dataset_dict["train"]
#tatoeba_eval_dataset: Dataset = tatoeba_dataset_dict["test"]
#
tatoeba_dataset_3hn = load_dataset('parquet', data_files={'parallel-sentences-tatoeba-en-de-hn/3_hard_negatives/*.parquet'})['train'].train_test_split(test_size=10000, seed=12)
tatoeba_3hn_train_dataset: Dataset = tatoeba_dataset_3hn["train"]
tatoeba_3hn_eval_dataset: Dataset = tatoeba_dataset_3hn["test"]
#
tatoeba_dataset_0hn = load_dataset('parquet', data_files={'parallel-sentences-tatoeba-en-de-hn/0_hard_negatives/*.parquet'})['train'].train_test_split(test_size=0.02, seed=12)
tatoeba_0hn_train_dataset: Dataset = tatoeba_dataset_0hn["train"]
tatoeba_0hn_eval_dataset: Dataset = tatoeba_dataset_0hn["test"]
print("Loaded tatoeba EN-DE dataset.")
#
print("Loading WikiMatrix EN-DE dataset...")
# source: (EN-DE) https://huggingface.co/datasets/sentence-transformers/parallel-sentences-wikimatrix
# License: CC BY-SA 4.0
# entries: ~344k
# Original dataset not used
#wikimatrix_dataset = load_dataset("sentence-transformers/parallel-sentences-wikimatrix", "en-de", split="train")
#wikimatrix_dataset_dict = wikimatrix_dataset.train_test_split(test_size=10000, seed=12)
#wikimatrix_train_dataset: Dataset = wikimatrix_dataset_dict["train"]
#wikimatrix_eval_dataset: Dataset = wikimatrix_dataset_dict["test"]
#
# scored and filtered hard negative version and remaining sentences
wikimatrix_3hn_ds = load_dataset('parquet', data_files={'parallel-sentences-wikimatrix-hn_3hn/3_hard_negatives/train-*.parquet'}, split='train')
wikimatrix_3hn_ds = wikimatrix_3hn_ds.train_test_split(test_size=10000, seed=12)
wikimatrix_3hn_train_ds: Dataset = wikimatrix_3hn_ds["train"]
wikimatrix_3hn_eval_ds: Dataset = wikimatrix_3hn_ds["test"]
#
wikimatrix_0hn_ds = load_dataset('parquet', data_files={'parallel-sentences-wikimatrix-hn_3hn/0_hard_negatives/train-*.parquet'}, split='train')
wikimatrix_0hn_ds = wikimatrix_0hn_ds.train_test_split(test_size=0.02, seed=12)
wikimatrix_0hn_train_ds: Dataset = wikimatrix_0hn_ds["train"]
wikimatrix_0hn_eval_ds: Dataset = wikimatrix_0hn_ds["test"]
#
print("Loaded WikiMatrix EN-DE dataset.")
#
print("Loading Wikipedia-Abstract DE dataset...")
# source: https://huggingface.co/datasets/laion/Wikipedia-Abstract
# License: MIT
# entries: 2.57M
# comment: relicensing a Wikipedia text to MIT is a bit unusual as it was Creative Commons Attribution-ShareAlike 4.0 and/or GNU Free Documentation License
# original version unused
#wikipedia_abstract_ds = load_dataset("laion/Wikipedia-Abstract", "German", split="train").select_columns(['Title', 'Abstract'])
#wikipedia_abstract_ds = wikipedia_abstract_ds.train_test_split(test_size=10000, seed=12)
#wikipedia_abstract_train_dataset: Dataset = wikipedia_abstract_ds["train"]
#wikipedia_abstract_eval_dataset: Dataset = wikipedia_abstract_ds["test"]
#
# hard negative version and remaining sentences
wikipedia_abstract_3hn_ds = load_dataset('parquet', data_files={'Wikipedia-Abstract-distilled_3hn/3_hard_negatives/train-*.parquet'}, split='train')
wikipedia_abstract_3hn_ds = wikipedia_abstract_3hn_ds.train_test_split(test_size=10000, seed=12)
wikipedia_abstract_3hn_train_dataset: Dataset = wikipedia_abstract_3hn_ds["train"]
wikipedia_abstract_3hn_eval_dataset: Dataset = wikipedia_abstract_3hn_ds["test"]
#
wikipedia_abstract_0hn_ds = load_dataset('parquet', data_files={'Wikipedia-Abstract-distilled_3hn/0_hard_negatives/train-*.parquet'}, split='train')
wikipedia_abstract_0hn_ds = wikipedia_abstract_0hn_ds.train_test_split(test_size=0.02, seed=12)
wikipedia_abstract_0hn_train_dataset: Dataset = wikipedia_abstract_0hn_ds["train"]
wikipedia_abstract_0hn_eval_dataset: Dataset = wikipedia_abstract_0hn_ds["test"]
print("Loaded Wikipedia-Abstract DE dataset.")
#
print("Loading wiktionary GDG-D DE dataset...")
# source: https://huggingface.co/jfeil/GermanDefinitionGeneration-Distillation
# License: gpl-3.0
# entries: ~900k
#
# GermanDefinitionGeneration-Distillation_3hn
wiktionary_gdg_de_3hn_train_ds: Dataset = load_dataset('parquet', data_files={'GermanDefinitionGeneration-Distillation_3hn/3_hard_negatives/train-*.parquet'}, split='train')
wiktionary_gdg_de_3hn_eval_ds: Dataset = load_dataset('parquet', data_files={'GermanDefinitionGeneration-Distillation_3hn/3_hard_negatives/validation-*.parquet'}, split='train')
#
# still needs optimisation
wiktionary_gdg_de_short_ds = load_dataset("jfeil/GermanDefinitionGeneration-Distillation")
wiktionary_gdg_de_short_ds = wiktionary_gdg_de_short_ds.select_columns(['context_sentence', 'title'])
wiktionary_gdg_de_short_train_dataset: Dataset = wiktionary_gdg_de_short_ds["train"]
wiktionary_gdg_de_short_eval_dataset: Dataset = wiktionary_gdg_de_short_ds["test"]
print("Loaded GDG-D DE dataset.")
#
print("Loading wmt24pp dataset...")
# source: https://huggingface.co/datasets/google/wmt24pp
# License: Apache-2.0
# interesting fields: source, target
# entries: 960 (after filtering of 'is_bad_source')
wmt24pp_dataset = load_dataset("google/wmt24pp", "en-de_DE", split="train").filter(lambda _: _["is_bad_source"] == False)
wmt24pp_dataset = wmt24pp_dataset.select_columns(['source', 'target'])
wmt24pp_dataset_dict = wmt24pp_dataset.train_test_split(test_size=0.02, seed=12)
wmt24pp_train_dataset: Dataset = wmt24pp_dataset_dict["train"]
wmt24pp_eval_dataset: Dataset = wmt24pp_dataset_dict["test"]
print("Loaded wmt24pp dataset.")
#
print("Loading synthia_german_experimental dataset...")
# source: https://huggingface.co/datasets/jphme/synthia_german_experimental
# original: https://huggingface.co/datasets/migtissera/Synthia-v1.3
# License: Apache-2.0
# interesting fields: instruction, response
# entries: ~100000
# final: 14453
# notes: filtered on scores, take only if all scores are "3" (best).
synthia_de_ds = load_dataset("jphme/synthia_german_experimental", split="train").filter(lambda _: _["score_deutsch"] == 3 and _["score_antwort"] == 3)
synthia_de_ds = synthia_de_ds.select_columns(["instruction", "response"])
synthia_de_ds = synthia_de_ds.train_test_split(test_size=0.02, seed=12)
synthia_de_train_dataset: Dataset = synthia_de_ds["train"]
synthia_de_eval_dataset: Dataset = synthia_de_ds["test"]
print("Loaded synthia_german_experimental dataset.")
#
print("Loading ger-backtrans-paraphrase dataset...")
# source: https://huggingface.co/datasets/deutsche-telekom/ger-backtrans-paraphrase
# License: CC-BY-SA-4.0
# entries: 21292789
# filtered: 862574 (tokens >= 25, cos_sim >=0.9)
# filtered: ~2.1M (tokens >= 17, cos_sim >=0.8) (once a try - results were really bad)
# notes: also thanks to Daniel Heinze for more filter examples
# source: https://huggingface.co/datasets/danielheinz/telekom-backtrans-paraphrase-filtered
# original dataset without hard negatives unused
#telekom_gbp_dataset = load_dataset("deutsche-telekom/ger-backtrans-paraphrase", split="train")
#telekom_gbp_dataset = telekom_gbp_dataset.filter(lambda _: _["cos_sim"] >= 0.9 and _["cos_sim"] < 0.999 and _["jaccard_similarity"] >= 0.3 and _["en_de_token_count"] >= 25 and _["de_token_count"] >= 25)
#telekom_gbp_dataset = telekom_gbp_dataset.select_columns(['en', 'de', 'en_de'])
# make a copy - but only with 'en_de' and 'de'
#telekom_gbp_ende_dataset = telekom_gbp_dataset.select_columns(['en_de', 'de'])
# build the 'original' set
#telekom_gbp_dataset_dict = telekom_gbp_dataset.train_test_split(test_size=0.05, seed=12)
#telekom_gbp_train_dataset: Dataset = telekom_gbp_dataset_dict["train"]
#telekom_gbp_eval_dataset: Dataset = telekom_gbp_dataset_dict["test"]
# now build a second set of 'bad' to 'good'
#telekom_gbp_ende_dataset_dict = telekom_gbp_ende_dataset.train_test_split(test_size=0.05, seed=12)
#telekom_gbp_ende_train_dataset: Dataset = telekom_gbp_ende_dataset_dict["train"]
#telekom_gbp_ende_eval_dataset: Dataset = telekom_gbp_ende_dataset_dict["test"]
#
# FILTERED, SPLIT AND WITH HARD NEGATIVES
gbp_3hn_ds = load_dataset('parquet', data_files={'ger-backtrans-paraphrase-350c-sts_3hn/3_hard_negatives/*.parquet'}, split="train")
gbp_3hn_add_ds = load_dataset('parquet', data_files={'ger-backtrans-paraphrase-200c-sts_3hn/3_hard_negatives/*.parquet'}, split="train")
gbp_3hn_ds = concatenate_datasets([gbp_3hn_ds, gbp_3hn_add_ds])
gbp_3hn_ds = gbp_3hn_ds.train_test_split(test_size=0.02, seed=12)
gbp_3hn_train_ds: Dataset = gbp_3hn_ds['train']
gbp_3hn_eval_ds: Dataset = gbp_3hn_ds['test']
#
gbp_0hn_ds = load_dataset('parquet', data_files={'ger-backtrans-paraphrase-350c-sts_3hn/0_hard_negatives/*.parquet'}, split="train")
gbp_0hn_add_ds = load_dataset('parquet', data_files={'ger-backtrans-paraphrase-200c-sts_3hn/0_hard_negatives/*.parquet'}, split="train")
gbp_0hn_ds = concatenate_datasets([gbp_0hn_ds, gbp_0hn_add_ds])
gbp_0hn_add_ds = load_dataset('parquet', data_files={'ger-backtrans-paraphrase-150c-sts_3hn/0_hard_negatives/*.parquet'}, split="train")
gbp_0hn_ds = concatenate_datasets([gbp_0hn_ds, gbp_0hn_add_ds])
gbp_0hn_ds = gbp_0hn_ds.train_test_split(test_size=0.02, seed=12)
gbp_0hn_train_ds: Dataset = gbp_0hn_ds['train']
gbp_0hn_eval_ds: Dataset = gbp_0hn_ds['test']
#
gbp_ende_3hn_ds = load_dataset('parquet', data_files={'ger-backtrans-paraphrase-en_de-350c-sts_3hn/3_hard_negatives/*.parquet'}, split="train")
gbp_ende_3hn_add_ds = load_dataset('parquet', data_files={'ger-backtrans-paraphrase-en_de-200c-sts_3hn/3_hard_negatives/*.parquet'}, split="train")
gbp_ende_3hn_ds = concatenate_datasets([gbp_ende_3hn_ds, gbp_ende_3hn_add_ds])
gbp_ende_3hn_add_ds = load_dataset('parquet', data_files={'ger-backtrans-paraphrase-en_de-150c-sts_3hn/3_hard_negatives/*.parquet'}, split="train")
gbp_ende_3hn_ds = concatenate_datasets([gbp_ende_3hn_ds, gbp_ende_3hn_add_ds])
gbp_ende_3hn_ds = gbp_ende_3hn_ds.train_test_split(test_size=0.02, seed=12)
gbp_ende_3hn_train_ds: Dataset = gbp_ende_3hn_ds['train']
gbp_ende_3hn_eval_ds: Dataset = gbp_ende_3hn_ds['test']
#
gbp_ende_0hn_ds = load_dataset('parquet', data_files={'ger-backtrans-paraphrase-en_de-350c-sts_3hn/0_hard_negatives/*.parquet'}, split="train")
gbp_ende_0hn_add_ds = load_dataset('parquet', data_files={'ger-backtrans-paraphrase-en_de-200c-sts_3hn/0_hard_negatives/*.parquet'}, split="train")
gbp_ende_0hn_ds = concatenate_datasets([gbp_ende_0hn_ds, gbp_ende_0hn_add_ds])
gbp_ende_0hn_add_ds = load_dataset('parquet', data_files={'ger-backtrans-paraphrase-en_de-150c-sts_3hn/0_hard_negatives/*.parquet'}, split="train")
gbp_ende_0hn_ds = concatenate_datasets([gbp_ende_0hn_ds, gbp_ende_0hn_add_ds])
gbp_ende_0hn_ds = gbp_ende_0hn_ds.train_test_split(test_size=0.02, seed=12)
gbp_ende_0hn_train_ds: Dataset = gbp_ende_0hn_ds['train']
gbp_ende_0hn_eval_ds: Dataset = gbp_ende_0hn_ds['test']
print("Loaded ger-backtrans-paraphrase dataset.")
#
print("Loading STSb Multi MT (de) dataset...")
# source: https://huggingface.co/datasets/PhilipMay/stsb_multi_mt
# License: CC-BY-SA-4.0 - https://github.com/PhilipMay/stsb-multi-mt/blob/main/LICENSE
# Original: https://ixa2.si.ehu.eus/stswiki/index.php/STSbenchmark
# entries: 5749
#stbs_de_dataset = load_dataset("PhilipMay/stsb_multi_mt", "de").filter(lambda _: _["similarity_score"] >= 1 and _["similarity_score"] < 5)
#stbs_de_dataset = stbs_de_dataset.select_columns(['sentence1', 'sentence2'])
#stbs_de_train_dataset: Dataset = stbs_de_dataset["train"]
#stbs_de_eval_dataset: Dataset = stbs_de_dataset["dev"]
#
stbs_de_3hn_train_dataset = load_dataset('parquet', data_files={'stsb_multi_mt-de-hn/3_hard_negatives/train*.parquet'}, split="train")
stbs_de_3hn_eval_dataset = load_dataset('parquet', data_files={'stsb_multi_mt-de-hn/3_hard_negatives/test*.parquet'}, split="train")
print("Loaded STSb Multi MT (de) dataset.")
#
print("Loading STSb Multi MT (en) dataset...")
# source: https://huggingface.co/datasets/PhilipMay/stsb_multi_mt
# License: CC-BY-SA-4.0 - https://github.com/PhilipMay/stsb-multi-mt/blob/main/LICENSE
# Original: https://ixa2.si.ehu.eus/stswiki/index.php/STSbenchmark
# entries: 5749
#stbs_en_dataset = load_dataset("PhilipMay/stsb_multi_mt", "en").filter(lambda _: _["similarity_score"] >= 1 and _["similarity_score"] < 5)
#stbs_en_dataset = stbs_en_dataset.select_columns(['sentence1', 'sentence2'])
#stbs_en_train_dataset: Dataset = stbs_en_dataset["train"]
#stbs_en_eval_dataset: Dataset = stbs_en_dataset["dev"]
#
stbs_en_3hn_train_dataset = load_dataset('parquet', data_files={'stsb_multi_mt-en-hn/3_hard_negatives/train*.parquet'}, split="train")
stbs_en_3hn_eval_dataset = load_dataset('parquet', data_files={'stsb_multi_mt-en-hn/3_hard_negatives/test*.parquet'}, split="train")
print("Loaded STSb Multi MT (en) dataset.")
#
print("Loading paws-x (de) dataset...")
# source: https://huggingface.co/datasets/google-research-datasets/paws-x
# License: Other - https://github.com/google-research-datasets/paws/blob/master/LICENSE
# License: The dataset may be freely used for any purpose, although acknowledgement of Google LLC ("Google") as the data source would be appreciated.
# entries: 49401
# Info: filtered only for "true" answers (["label"] == 1)
pawsx_de_dataset = load_dataset("google-research-datasets/paws-x", "de").filter(lambda _: _["label"] == 1)
pawsx_de_dataset = pawsx_de_dataset.select_columns(['sentence1', 'sentence2'])
pawsx_de_train_dataset: Dataset = pawsx_de_dataset["train"]
pawsx_de_eval_dataset: Dataset = pawsx_de_dataset["validation"]
print("Loaded paws-x (de) dataset.")
#
print("Loading paws-x (en) dataset...")
# source: https://huggingface.co/datasets/google-research-datasets/paws-x
# License: Other - https://github.com/google-research-datasets/paws/blob/master/LICENSE
# entries: 49401
pawsx_en_dataset = load_dataset("google-research-datasets/paws-x", "en").filter(lambda _: _["label"] == 1)
pawsx_en_dataset = pawsx_en_dataset.select_columns(['sentence1', 'sentence2'])
pawsx_en_train_dataset: Dataset = pawsx_en_dataset["train"]
pawsx_en_eval_dataset: Dataset = pawsx_en_dataset["validation"]
print("Loaded paws-x (en) dataset.")
#
print("Loading all NLI-26lang-2mil7 (local) datasets...")
# source: https://huggingface.co/datasets/MoritzLaurer/multilingual-NLI-26lang-2mil7
# License: MIT
# License-source: https://github.com/easonnie/combine-FEVER-NSMN
# entries: 25000
# info: 'label' – entailment (0), neutral (1), contradiction (2).
# for simple translations
main_name = 'multilingual-NLI-26lang-2mil7'
language = 'de'
entail = 'de_entailment'
transl = 'en_de'
subset = 'anli'
# anli entailments 3hn - de_anli_entail_3hn_train_ds
de_anli_entail_3hn_ds = load_dataset('parquet', data_files={f'{main_name}-{language}_{subset}-{entail}_hn/3_hard_negatives/*.parquet'}, split="train").train_test_split(test_size=0.02, seed=12)
de_anli_entail_3hn_train_ds: Dataset = de_anli_entail_3hn_ds['train']
de_anli_entail_3hn_eval_ds: Dataset = de_anli_entail_3hn_ds['test']
# anli entailments 0hn - de_anli_entail_0hn_train_ds
de_anli_entail_0hn_ds = load_dataset('parquet', data_files={f'{main_name}-{language}_{subset}-{entail}_hn/0_hard_negatives/*.parquet'}, split="train").train_test_split(test_size=0.02, seed=12)
de_anli_entail_0hn_train_ds: Dataset = de_anli_entail_0hn_ds['train']
de_anli_entail_0hn_eval_ds: Dataset = de_anli_entail_0hn_ds['test']
# anli translation 3hn - de_anli_transl_3hn_train_ds
de_anli_transl_3hn_ds = load_dataset('parquet', data_files={f'{main_name}-{language}_{subset}-{transl}_hn/3_hard_negatives/*.parquet'}, split="train").train_test_split(test_size=0.02, seed=12)
de_anli_transl_3hn_train_ds: Dataset = de_anli_transl_3hn_ds['train']
de_anli_transl_3hn_eval_ds: Dataset = de_anli_transl_3hn_ds['test']
# anli translation 0hn - de_anli_transl_0hn_train_ds
de_anli_transl_0hn_ds = load_dataset('parquet', data_files={f'{main_name}-{language}_{subset}-{transl}_hn/0_hard_negatives/*.parquet'}, split="train").train_test_split(test_size=0.02, seed=12)
de_anli_transl_0hn_train_ds: Dataset = de_anli_transl_0hn_ds['train']
de_anli_transl_0hn_eval_ds: Dataset = de_anli_transl_0hn_ds['test']
#
subset = 'fever'
# fever entailments 3hn - de_fever_entail_3hn_train_ds
de_fever_entail_3hn_ds = load_dataset('parquet', data_files={f'{main_name}-{language}_{subset}-{entail}_hn/3_hard_negatives/*.parquet'}, split="train").train_test_split(test_size=0.02, seed=12)
de_fever_entail_3hn_train_ds: Dataset = de_fever_entail_3hn_ds['train']
de_fever_entail_3hn_eval_ds: Dataset = de_fever_entail_3hn_ds['test']
# fever entailments 0hn - de_fever_entail_0hn_train_ds
de_fever_entail_0hn_ds = load_dataset('parquet', data_files={f'{main_name}-{language}_{subset}-{entail}_hn/0_hard_negatives/*.parquet'}, split="train").train_test_split(test_size=0.02, seed=12)
de_fever_entail_0hn_train_ds: Dataset = de_fever_entail_0hn_ds['train']
de_fever_entail_0hn_eval_ds: Dataset = de_fever_entail_0hn_ds['test']
# fever translation 3hn - de_fever_transl_3hn_train_ds
de_fever_transl_3hn_ds = load_dataset('parquet', data_files={f'{main_name}-{language}_{subset}-{transl}_hn/3_hard_negatives/*.parquet'}, split="train").train_test_split(test_size=0.02, seed=12)
de_fever_transl_3hn_train_ds: Dataset = de_fever_transl_3hn_ds['train']
de_fever_transl_3hn_eval_ds: Dataset = de_fever_transl_3hn_ds['test']
# fever translation 0hn - de_fever_transl_0hn_train_ds
de_fever_transl_0hn_ds = load_dataset('parquet', data_files={f'{main_name}-{language}_{subset}-{transl}_hn/0_hard_negatives/*.parquet'}, split="train").train_test_split(test_size=0.02, seed=12)
de_fever_transl_0hn_train_ds: Dataset = de_fever_transl_0hn_ds['train']
de_fever_transl_0hn_eval_ds: Dataset = de_fever_transl_0hn_ds['test']
#
subset = 'ling'
# ling entailments 3hn - de_ling_entail_3hn_train_ds
de_ling_entail_3hn_ds = load_dataset('parquet', data_files={f'{main_name}-{language}_{subset}-{entail}_hn/3_hard_negatives/*.parquet'}, split="train").train_test_split(test_size=0.02, seed=12)
de_ling_entail_3hn_train_ds: Dataset = de_ling_entail_3hn_ds['train']
de_ling_entail_3hn_eval_ds: Dataset = de_ling_entail_3hn_ds['test']
# ling entailments 0hn - de_ling_entail_0hn_train_ds
de_ling_entail_0hn_ds = load_dataset('parquet', data_files={f'{main_name}-{language}_{subset}-{entail}_hn/0_hard_negatives/*.parquet'}, split="train").train_test_split(test_size=0.02, seed=12)
de_ling_entail_0hn_train_ds: Dataset = de_ling_entail_0hn_ds['train']
de_ling_entail_0hn_eval_ds: Dataset = de_ling_entail_0hn_ds['test']
# ling translation 3hn - de_ling_transl_3hn_train_ds
de_ling_transl_3hn_ds = load_dataset('parquet', data_files={f'{main_name}-{language}_{subset}-{transl}_hn/3_hard_negatives/*.parquet'}, split="train").train_test_split(test_size=0.02, seed=12)
de_ling_transl_3hn_train_ds: Dataset = de_ling_transl_3hn_ds['train']
de_ling_transl_3hn_eval_ds: Dataset = de_ling_transl_3hn_ds['test']
# ling translation 0hn - de_ling_transl_0hn_train_ds
# this set is empty :D
#de_ling_transl_0hn_ds = load_dataset('parquet', data_files={f'{main_name}-{language}_{subset}-{transl}_hn/0_hard_negatives/*.parquet'}, split="train").train_test_split(test_size=0.02, seed=12)
#de_ling_transl_0hn_train_ds: Dataset = de_ling_transl_0hn_ds['train']
#de_ling_transl_0hn_eval_ds: Dataset = de_ling_transl_0hn_ds['test']
#
subset = 'mnli'
# mnli entailments 3hn - de_mnli_entail_3hn_train_ds
de_mnli_entail_3hn_ds = load_dataset('parquet', data_files={f'{main_name}-{language}_{subset}-{entail}_hn/3_hard_negatives/*.parquet'}, split="train").train_test_split(test_size=0.02, seed=12)
de_mnli_entail_3hn_train_ds: Dataset = de_mnli_entail_3hn_ds['train']
de_mnli_entail_3hn_eval_ds: Dataset = de_mnli_entail_3hn_ds['test']
# mnli entailments 0hn - de_mnli_entail_0hn_train_ds
de_mnli_entail_0hn_ds = load_dataset('parquet', data_files={f'{main_name}-{language}_{subset}-{entail}_hn/0_hard_negatives/*.parquet'}, split="train").train_test_split(test_size=0.02, seed=12)
de_mnli_entail_0hn_train_ds: Dataset = de_mnli_entail_0hn_ds['train']
de_mnli_entail_0hn_eval_ds: Dataset = de_mnli_entail_0hn_ds['test']
# mnli translation 3hn - de_mnli_transl_3hn_train_ds
de_mnli_transl_3hn_ds = load_dataset('parquet', data_files={f'{main_name}-{language}_{subset}-{transl}_hn/3_hard_negatives/*.parquet'}, split="train").train_test_split(test_size=0.02, seed=12)
de_mnli_transl_3hn_train_ds: Dataset = de_mnli_transl_3hn_ds['train']
de_mnli_transl_3hn_eval_ds: Dataset = de_mnli_transl_3hn_ds['test']
# mnli translation 0hn - de_mnli_transl_0hn_train_ds
de_mnli_transl_0hn_ds = load_dataset('parquet', data_files={f'{main_name}-{language}_{subset}-{transl}_hn/0_hard_negatives/*.parquet'}, split="train").train_test_split(test_size=0.02, seed=12)
de_mnli_transl_0hn_train_ds: Dataset = de_mnli_transl_0hn_ds['train']
de_mnli_transl_0hn_eval_ds: Dataset = de_mnli_transl_0hn_ds['test']
#
subset = 'wanli'
# wanli entailments 3hn - de_wanli_entail_3hn_train_ds
de_wanli_entail_3hn_ds = load_dataset('parquet', data_files={f'{main_name}-{language}_{subset}-{entail}_hn/3_hard_negatives/*.parquet'}, split="train").train_test_split(test_size=0.02, seed=12)
de_wanli_entail_3hn_train_ds: Dataset = de_wanli_entail_3hn_ds['train']
de_wanli_entail_3hn_eval_ds: Dataset = de_wanli_entail_3hn_ds['test']
# wanli entailments 0hn - de_wanli_entail_0hn_train_ds
de_wanli_entail_0hn_ds = load_dataset('parquet', data_files={f'{main_name}-{language}_{subset}-{entail}_hn/0_hard_negatives/*.parquet'}, split="train").train_test_split(test_size=0.02, seed=12)
de_wanli_entail_0hn_train_ds: Dataset = de_wanli_entail_0hn_ds['train']
de_wanli_entail_0hn_eval_ds: Dataset = de_wanli_entail_0hn_ds['test']
# wanli translation 3hn - de_wanli_transl_3hn_train_ds
de_wanli_transl_3hn_ds = load_dataset('parquet', data_files={f'{main_name}-{language}_{subset}-{transl}_hn/3_hard_negatives/*.parquet'}, split="train").train_test_split(test_size=0.02, seed=12)
de_wanli_transl_3hn_train_ds: Dataset = de_wanli_transl_3hn_ds['train']
de_wanli_transl_3hn_eval_ds: Dataset = de_wanli_transl_3hn_ds['test']
# wanli translation 0hn - de_wanli_transl_0hn_train_ds
de_wanli_transl_0hn_ds = load_dataset('parquet', data_files={f'{main_name}-{language}_{subset}-{transl}_hn/0_hard_negatives/*.parquet'}, split="train").train_test_split(test_size=0.02, seed=12)
de_wanli_transl_0hn_train_ds: Dataset = de_wanli_transl_0hn_ds['train']
de_wanli_transl_0hn_eval_ds: Dataset = de_wanli_transl_0hn_ds['test']
#
print("Loaded all NLI-26lang-2mil7 (local hn) datasets...")
#
# regular dataset unused
#print("Loading NLI-26lang-2mil7 (anli) dataset...")
# source: https://huggingface.co/datasets/MoritzLaurer/multilingual-NLI-26lang-2mil7
# License: MIT
# License-source: https://github.com/easonnie/combine-FEVER-NSMN
# entries: 25000
# info: 'label' – entailment (0), neutral (1), contradiction (2).
# for simple translations
#NLI_de_anli_dataset = load_dataset("MoritzLaurer/multilingual-NLI-26lang-2mil7", split="de_anli")
#NLI_de_anli_ende_dataset = NLI_de_anli_dataset.select_columns(['hypothesis_original', 'hypothesis']).rename_columns({'hypothesis_original': 'sentence1', 'hypothesis': 'sentence2'})
#NLI_de_anli_ende_dataset2 = NLI_de_anli_dataset.select_columns(['premise_original', 'premise']).rename_columns({'premise_original': 'sentence1', 'premise': 'sentence2'})
#NLI_de_anli_ende_dataset = concatenate_datasets([NLI_de_anli_ende_dataset, NLI_de_anli_ende_dataset2])
#del NLI_de_anli_ende_dataset2
#NLI_de_anli_ende_dataset = NLI_de_anli_ende_dataset.train_test_split(test_size=0.05, seed=12)
#NLI_de_anli_ende_train_dataset: Dataset = NLI_de_anli_ende_dataset["train"]
#NLI_de_anli_ende_eval_dataset: Dataset = NLI_de_anli_ende_dataset["test"]
#
# for simple entailments from "long" to "conclusion" (like classification)
#NLI_de_anli_de_entailment_dataset = NLI_de_anli_dataset.select_columns = NLI_de_anli_dataset.filter(lambda _: _["label"] == 0).select_columns(['premise', 'hypothesis']).rename_columns({'premise': 'sentence1', 'hypothesis': 'sentence2'})
#del NLI_de_anli_dataset
#NLI_de_anli_de_entailment_dataset = NLI_de_anli_de_entailment_dataset.train_test_split(test_size=0.05, seed=12)
#NLI_de_anli_entailment_train_dataset: Dataset = NLI_de_anli_de_entailment_dataset["train"]
#NLI_de_anli_entailment_eval_dataset: Dataset = NLI_de_anli_de_entailment_dataset["test"]
#print("Loaded NLI-26lang-2mil7 (anli) dataset.")
#
#print("Loading NLI-26lang-2mil7 (fever) dataset...")
# source: https://huggingface.co/datasets/MoritzLaurer/multilingual-NLI-26lang-2mil7
# License: MIT
# License-source: https://github.com/easonnie/combine-FEVER-NSMN
# entries: 25000
#NLI_de_fever_dataset = load_dataset("MoritzLaurer/multilingual-NLI-26lang-2mil7", split="de_fever")
#NLI_de_fever_dataset2 = NLI_de_fever_dataset
#NLI_de_fever_dataset3 = NLI_de_fever_dataset.filter(lambda _: _["label"] == 0).select_columns(['premise', 'hypothesis'])
#NLI_de_fever_dataset = NLI_de_fever_dataset.remove_columns(['label', 'hypothesis_original', 'hypothesis'])
#NLI_de_fever_dataset2 = NLI_de_fever_dataset2.remove_columns(['label', 'premise_original', 'premise'])
#NLI_de_fever_dataset2 = NLI_de_fever_dataset2.rename_column('hypothesis_original', 'sentence1')
#NLI_de_fever_dataset2 = NLI_de_fever_dataset2.rename_column('hypothesis', 'sentence2')
#NLI_de_fever_dataset3 = NLI_de_fever_dataset3.rename_column('hypothesis', 'sentence2')
#NLI_de_fever_dataset_dict = NLI_de_fever_dataset.train_test_split(test_size=0.05, seed=12)
#NLI_de_fever_dataset2_dict = NLI_de_fever_dataset2.train_test_split(test_size=0.05, seed=12)
#NLI_de_fever_dataset3_dict = NLI_de_fever_dataset3.train_test_split(test_size=0.05, seed=12)
#NLI_de_fever_train_dataset: Dataset = NLI_de_fever_dataset_dict["train"]
#NLI_de_fever_eval_dataset: Dataset = NLI_de_fever_dataset_dict["test"]
#NLI_de_fever_train2_dataset: Dataset = NLI_de_fever_dataset2_dict["train"]
#NLI_de_fever_eval2_dataset: Dataset = NLI_de_fever_dataset2_dict["test"]
#NLI_de_fever_train3_dataset: Dataset = NLI_de_fever_dataset3_dict["train"]
#NLI_de_fever_eval3_dataset: Dataset = NLI_de_fever_dataset3_dict["test"]
#print("Loaded NLI-26lang-2mil7 (fever) dataset.")
#
print("Loading Jina AI dataset...")
# source: https://huggingface.co/datasets/jinaai/parallel-sentences
# License: Apache-2.0
# entries: 1000
# info: sadly JinaAI delivers only 1000 pairs (we know we could do better by …)
# Info: Multilingual in different columns
jina_ai_ps_dataset = load_dataset("jinaai/parallel-sentences", split="train")
jina_ai_ps_dataset_3en = jina_ai_ps_dataset.select_columns(['anchor', 'entailment', 'negative'])
jina_ai_ps_dataset_en_de = jina_ai_ps_dataset.select_columns(['anchor', 'anchor_de'])
jina_ai_ps_dataset_de_de = jina_ai_ps_dataset.select_columns(['anchor_de', 'entailment_de'])
# splits
jina_ai_ps_dataset_3en_dict = jina_ai_ps_dataset_3en.train_test_split(test_size=0.05, seed=12)
jina_ai_ps_dataset_en_de_dict = jina_ai_ps_dataset_en_de.train_test_split(test_size=0.05, seed=12)
jina_ai_ps_dataset_de_de_dict = jina_ai_ps_dataset_de_de.train_test_split(test_size=0.05, seed=12)
jina_ai_ps_train_3en: Dataset = jina_ai_ps_dataset_3en_dict["train"]
jina_ai_ps_eval_3en: Dataset = jina_ai_ps_dataset_3en_dict["test"]
jina_ai_ps_train_en_de: Dataset = jina_ai_ps_dataset_en_de_dict["train"]
jina_ai_ps_eval_en_de: Dataset = jina_ai_ps_dataset_en_de_dict["test"]
jina_ai_ps_train_de_de: Dataset = jina_ai_ps_dataset_de_de_dict["train"]
jina_ai_ps_eval_de_de: Dataset = jina_ai_ps_dataset_de_de_dict["test"]
print("Loaded Jina AI dataset.")
#
print("Loading Polyglot-or-Not (de) dataset...")
# source: https://huggingface.co/datasets/Polyglot-or-Not/Fact-Completion/
# License: Apache-2.0
# entries: 16287
polyglot_de_dataset = load_dataset("Polyglot-or-Not/Fact-Completion", split="German").select_columns(['stem', 'true', 'false'])
polyglot_de_dict = polyglot_de_dataset.train_test_split(test_size=0.05, seed=12)
polyglot_de_train_dataset: Dataset = polyglot_de_dict["train"]
polyglot_de_eval_dataset: Dataset = polyglot_de_dict["test"]
print("Loaded Polyglot-or-Not (de) dataset.")
#
print("Loading Polyglot-or-Not (en) dataset...")
# source: https://huggingface.co/datasets/Polyglot-or-Not/Fact-Completion/
# License: Apache-2.0
# entries: 26254
polyglot_en_dataset = load_dataset("Polyglot-or-Not/Fact-Completion", split="English").select_columns(['stem', 'true', 'false'])
polyglot_en_dict = polyglot_en_dataset.train_test_split(test_size=0.05, seed=12)
polyglot_en_train_dataset: Dataset = polyglot_en_dict["train"]
polyglot_en_eval_dataset: Dataset = polyglot_en_dict["test"]
print("Loaded Polyglot-or-Not (de) dataset.")
#
print("Loading Tilde_MODEL_EESC (en_de) dataset...")
# Tilde MODEL - EESC is a multilingual corpus compiled from document texts of European Economic and Social Committee document portal. Source: http://dm.eesc.europa.eu/
# License: CC-BY - Creative Commons with Attribution
# Roberts Rozis, Raivis Skadins, 2017, Tilde MODEL - Multilingual Open Data for EU Languages. Proceedings of the 21th Nordic Conference of Computational Linguistics NODALIDA 2017.
# https://tilde-model.s3-eu-west-1.amazonaws.com/nodalida2017_Tilde_MODEL.pdf
# https://tilde-model.s3-eu-west-1.amazonaws.com/Tilde_MODEL_Corpus.html
#
# entries: 1860675
# filtered: 1683698
# Original (local) version without hard negatives ignored
#tilde_EESC_dataset = load_dataset("parquet", data_files={'Tilde_MODEL_EESC/EESC.de-en-distilled-scored.parquet.br'}, split='train').filter(lambda _: _['score_sts'] > 0.5 and _['score_sts'] < 1).select_columns(['en', 'de'])
#tilde_EESC_dataset = tilde_EESC_dataset.train_test_split(test_size=10000, seed=12)
#tilde_EESC_train_dataset: Dataset = tilde_EESC_dataset["train"]
#tilde_EESC_eval_dataset: Dataset = tilde_EESC_dataset["test"]
#del tilde_EESC_dataset
#
# loading version with 3 hard negative ignoring folder with 0 negatives
tilde_EESC_dataset = load_dataset("parquet", data_files={'Tilde_EESC-en-de_hn/3_hard_negatives/train-*.parquet'}, split='train')
tilde_EESC_dataset = tilde_EESC_dataset.train_test_split(test_size=10000, seed=12)
tilde_EESC_train_dataset: Dataset = tilde_EESC_dataset["train"]
tilde_EESC_eval_dataset: Dataset = tilde_EESC_dataset["test"]
del tilde_EESC_dataset
#
print("Loaded Tilde_MODEL_EESC (en_de) dataset.")
#
print("Loading Tilde_MODEL_RAPID (en_de) dataset...")
# Tilde MODEL - RAPID multilingual parallel corpus is compiled from all press releases of Press Release Database of European Commission released between 1975 and end of 2016 as available from http://europa.eu/rapid/.
# License: CC-BY - Creative Commons with Attribution
# Roberts Rozis, Raivis Skadins, 2017, Tilde MODEL - Multilingual Open Data for EU Languages. Proceedings of the 21th Nordic Conference of Computational Linguistics NODALIDA 2017.
# https://tilde-model.s3-eu-west-1.amazonaws.com/nodalida2017_Tilde_MODEL.pdf
# https://tilde-model.s3-eu-west-1.amazonaws.com/Tilde_MODEL_Corpus.html
#
# entries: 779236
# filtered: 727743
# original scored set needs to be uploaded
# Original (local) version without hard negatives ignored
#tilde_RAPID_dataset = load_dataset("parquet", data_files={'Tilde_MODEL_RAPID/RAPID_2019.UNIQUE.de-en-distilled-scored.parquet'}, split='train').filter(lambda _: _['score_sts'] > 0.5 and _['score_sts'] < 1).select_columns(['en', 'de'])
#tilde_RAPID_dataset = tilde_RAPID_dataset.train_test_split(test_size=10000, seed=12)
#tilde_RAPID_train_dataset: Dataset = tilde_RAPID_dataset["train"]
#tilde_RAPID_eval_dataset: Dataset = tilde_RAPID_dataset["test"]
#del tilde_RAPID_dataset
#
# loading version with 3 hard negative ignoring folder with 0 negatives
tilde_RAPID_dataset = load_dataset("parquet", data_files={'Tilde_RAPID_2019-en-de-hn/3_hard_negatives/train-*.parquet'}, split='train')
tilde_RAPID_dataset = tilde_RAPID_dataset.train_test_split(test_size=10000, seed=12)
tilde_RAPID_train_dataset: Dataset = tilde_RAPID_dataset["train"]
tilde_RAPID_eval_dataset: Dataset = tilde_RAPID_dataset["test"]
del tilde_RAPID_dataset
print("Loaded Tilde_MODEL_RAPID (en_de) dataset.")
#
print("Loading miracl (de) as classification dataset...")
miracl_de_dataset = load_dataset('parquet', data_files={'miracl-corpus-de-hn-*/3_hard_negatives/train-*.parquet'}, split='train')
miracl_de_dataset = miracl_de_dataset.train_test_split(test_size=10000, seed=12)
miracl_de_train_dataset: Dataset = miracl_de_dataset["train"]
miracl_de_eval_dataset: Dataset = miracl_de_dataset["test"]
#
miracl_de_0hn_dataset = load_dataset('parquet', data_files={'miracl-corpus-de-hn_hn/0_hard_negatives/train-*.parquet'}, split='train')
miracl_de_0hn_dataset = miracl_de_0hn_dataset.train_test_split(test_size=0.02, seed=12)
miracl_de_0hn_train_dataset: Dataset = miracl_de_0hn_dataset['train']
miracl_de_0hn_eval_dataset: Dataset = miracl_de_0hn_dataset['test']
print("Loaded miracl (de) as classification dataset.")
#
train_dataset = DatasetDict({
'mmarco_3hn': mmarco_de_3hn_train_dataset,
'mmarco_2hn': mmarco_de_2hn_train_dataset,
'mmarco_1hn': mmarco_de_1hn_train_dataset,
'mmarco_0hn': mmarco_de_0hn_train_dataset,
'wp-22-12-de': wp_2212_de_train_dataset,
#'wp-22-12-de_3hn': wp_2212_de_train_dataset,
#'wp-22-12-de_0hn': wp_2212_de_0_train_dataset,
'swim_ir_de': swim_ir_de_train_dataset,
'swim_ir_de_3hn': swim_ir_de_3hn_train_dataset,
'swim_ir_de_title_3hn': swim_ir_de_title_3hn_train_dataset,
'swim_ir_de_title': swim_ir_de_title_train_dataset,
'avemio_triples': avemio_triples_train_dataset,
'avemio_pairs_3hn': avemio_pairs_3hn_train_ds,
'avemio_pairs_0hn': avemio_pairs_0hn_train_ds,
'nq_german_en_de_a_3hn': nq_german_en_de_a_3hn_train_ds,
'nq_german_en_de_3hn': nq_german_en_de_3hn_train_ds,
'nq_german_3hn': nq_german_3hn_train_ds,
'nq_german_1hn': nq_german_1hn_train_ds,
#'german_oasst1': german_oasst1_train_dataset,
'german_oasst1_hn': german_oasst1_hn_train_dataset,
'germanrag_short': germanrag_short_train_dataset,
'slimorca_dedup_3hn': slimorca_dedup_3hn_train_ds,
'slimorca_dedup_2hn': slimorca_dedup_2hn_train_ds,
'slimorca_dedup_1hn': slimorca_dedup_1hn_train_ds,
'slimorca_dedup_0hn': slimorca_dedup_0hn_train_ds,
#'german_gpt4': german_gpt4_train_dataset,
'german_gpt4_3hn': german_gpt4_3hn_train_dataset,
'german_orca_dpo': german_orca_dpo_train_dataset,
'alpaca_gpt4_3hn': alpaca_gpt4_de_3hn_train_dataset,
'alpaca_gpt4_0hn': alpaca_gpt4_de_0hn_train_dataset,
'dolly_context_de_3hn': dolly_context_de_3hn_train_ds,
#'dolly_context_de_0hn': dolly_context_de_0hn_train_ds,
'dolly_context_ende_3hn': dolly_context_ende_3hn_train_ds,
'dolly_instructions_de_3hn': dolly_instructions_de_3hn_train_ds,
'dolly_instructions_de_0hn': dolly_instructions_de_0hn_train_ds,
'dolly_instructions_ende_3hn': dolly_instructions_ende_3hn_train_ds,
#'dolly_instructions_ende_0hn': dolly_instructions_ende_0hn_train_ds,
'dolly_responses_de_3hn': dolly_responses_de_3hn_train_ds,
'dolly_responses_de_0hn': dolly_responses_de_0hn_train_ds,
'dolly_responses_ende_3hn': dolly_responses_ende_3hn_train_ds,
#'dolly_responses_ende_0hn': dolly_responses_ende_0hn_train_ds,
'saf_legal_de': saf_legal_de_train_ds,
'gls_3hn': gls_3hn_train_dataset,
'gls_2hn': gls_2hn_train_dataset,
'gls_1hn': gls_1hn_train_dataset,
'gls_0hn': gls_0hn_train_dataset,
'europarl_3hn': europarl_3hn_train_dataset,
'europarl_0hn': europarl_0hn_train_dataset,
#'tatoeba': tatoeba_train_dataset,
'tatoeba_3hn': tatoeba_3hn_train_dataset,
'tatoeba_0hn': tatoeba_0hn_train_dataset,
'wikimatrix_3hn': wikimatrix_3hn_train_ds,
#'wikimatrix_0hn': wikimatrix_0hn_train_ds,
'wikipedia_abstract_3hn': wikipedia_abstract_3hn_train_dataset,
'wikipedia_abstract_0hn': wikipedia_abstract_0hn_train_dataset,
'wiktionary_gdg_de_3hn': wiktionary_gdg_de_3hn_train_ds,
'wiktionary_gdg_de_short': wiktionary_gdg_de_short_train_dataset,
'wmt24pp': wmt24pp_train_dataset,
'synthia_de': synthia_de_train_dataset,
'gbp_3hn': gbp_3hn_train_ds,
#'gbp_0hn': gbp_0hn_train_ds,
'gbp_ende_3hn': gbp_ende_3hn_train_ds,
#'gbp_ende_0hn': gbp_ende_0hn_train_ds,
#'stbs_de': stbs_de_train_dataset,
'stbs_de_3hn': stbs_de_3hn_train_dataset,
#'stbs_en': stbs_en_train_dataset,
'stbs_en_3hn': stbs_en_3hn_train_dataset,
'pawsx_de': pawsx_de_train_dataset,
'pawsx_en': pawsx_en_train_dataset,
'nli_anli_entail_3hn': de_anli_entail_3hn_train_ds,
'nli_fever_entail_3hn': de_fever_entail_3hn_train_ds,
'nli_ling_entail_3hn': de_ling_entail_3hn_train_ds,
'nli_mnli_entail_3hn': de_mnli_entail_3hn_train_ds,
'nli_wanli_entail_3hn': de_wanli_entail_3hn_train_ds,
#'nli_anli_entail_0hn': de_anli_entail_0hn_train_ds,
#'nli_fever_entail_0hn': de_fever_entail_0hn_train_ds,
#'nli_ling_entail_0hn': de_ling_entail_0hn_train_ds,
#'nli_mnli_entail_0hn': de_mnli_entail_0hn_train_ds,
#'nli_wanli_entail_0hn': de_wanli_entail_0hn_train_ds,
'nli_anli_transl_3hn': de_anli_transl_3hn_train_ds,
'nli_fever_transl_3hn': de_fever_transl_3hn_train_ds,
'nli_ling_transl_3hn': de_ling_transl_3hn_train_ds,
'nli_mnli_transl_3hn': de_mnli_transl_3hn_train_ds,
'nli_wanli_transl_3hn': de_wanli_transl_3hn_train_ds,
#'nli_anli_transl_0hn': de_anli_transl_0hn_train_ds,
#'nli_fever_transl_0hn': de_fever_transl_0hn_train_ds,
#'nli_ling_transl_0hn': de_ling_transl_0hn_train_ds,
#'nli_mnli_transl_0hn': de_mnli_transl_0hn_train_ds,
#'nli_wanli_transl_0hn': de_wanli_transl_0hn_train_ds,
'jina_ai_3en': jina_ai_ps_train_3en,
'jina_ai_ende': jina_ai_ps_train_en_de,
'jina_ai_dede': jina_ai_ps_train_de_de,
'polyglot_de': polyglot_de_train_dataset,
'polyglot_en': polyglot_en_train_dataset,
'tilde_EESC': tilde_EESC_train_dataset,
#'tilde_RAPID': tilde_RAPID_train_dataset,
'miracl_de_3hn': miracl_de_train_dataset,
'miracl_de_0hn': miracl_de_0hn_train_dataset,
})
eval_dataset = DatasetDict({
'mmarco_3hn': mmarco_de_3hn_eval_dataset,
'mmarco_2hn': mmarco_de_2hn_eval_dataset,
'mmarco_1hn': mmarco_de_1hn_eval_dataset,
'mmarco_0hn': mmarco_de_0hn_eval_dataset,
'wp-22-12-de': wp_2212_de_eval_dataset,
#'wp-22-12-de_3hn': wp_2212_de_eval_dataset,
#'wp-22-12-de_0hn': wp_2212_de_0_eval_dataset,
'swim_ir_de': swim_ir_de_eval_dataset,
'swim_ir_de_3hn': swim_ir_de_3hn_eval_dataset,
'swim_ir_de_title_3hn': swim_ir_de_title_3hn_eval_dataset,
'swim_ir_de_title': swim_ir_de_title_eval_dataset,
'avemio_triples': avemio_triples_eval_dataset,
'avemio_pairs_3hn': avemio_pairs_3hn_eval_ds,
'avemio_pairs_0hn': avemio_pairs_0hn_eval_ds,
'nq_german_en_de_a_3hn': nq_german_en_de_a_3hn_eval_ds,
'nq_german_en_de_3hn': nq_german_en_de_3hn_eval_ds,
'nq_german_3hn': nq_german_3hn_eval_ds,
'nq_german_1hn': nq_german_1hn_eval_ds,
#'german_oasst1': german_oasst1_eval_dataset,
'german_oasst1_hn': german_oasst1_hn_eval_dataset,
'germanrag_short': germanrag_short_eval_dataset,
'slimorca_dedup_3hn': slimorca_dedup_3hn_eval_ds,
'slimorca_dedup_2hn': slimorca_dedup_2hn_eval_ds,
'slimorca_dedup_1hn': slimorca_dedup_1hn_eval_ds,
'slimorca_dedup_0hn': slimorca_dedup_0hn_eval_ds,
#'german_gpt4': german_gpt4_eval_dataset,
'german_gpt4_3hn': german_gpt4_3hn_eval_dataset,
'german_orca_dpo': german_orca_dpo_eval_dataset,
'alpaca_gpt4_3hn': alpaca_gpt4_de_3hn_eval_dataset,
'alpaca_gpt4_0hn': alpaca_gpt4_de_0hn_eval_dataset,
'dolly_context_de_3hn': dolly_context_de_3hn_eval_ds,
#'dolly_context_de_0hn': dolly_context_de_0hn_eval_ds,
'dolly_context_ende_3hn': dolly_context_ende_3hn_eval_ds,
'dolly_instructions_de_3hn': dolly_instructions_de_3hn_eval_ds,
'dolly_instructions_de_0hn': dolly_instructions_de_0hn_eval_ds,
'dolly_instructions_ende_3hn': dolly_instructions_ende_3hn_eval_ds,
#'dolly_instructions_ende_0hn': dolly_instructions_ende_0hn_eval_ds,
'dolly_responses_de_3hn': dolly_responses_de_3hn_eval_ds,
'dolly_responses_de_0hn': dolly_responses_de_0hn_eval_ds,
'dolly_responses_ende_3hn': dolly_responses_ende_3hn_eval_ds,
#'dolly_responses_ende_0hn': dolly_responses_ende_0hn_eval_ds,
'saf_legal_de': saf_legal_de_eval_ds,
'gls_3hn': gls_3hn_eval_dataset,
'gls_2hn': gls_2hn_eval_dataset,
'gls_1hn': gls_1hn_eval_dataset,
'gls_0hn': gls_0hn_eval_dataset,
'europarl_3hn': europarl_3hn_eval_dataset,
'europarl_0hn': europarl_0hn_eval_dataset,
#'tatoeba': tatoeba_eval_dataset,
'tatoeba_3hn': tatoeba_3hn_eval_dataset,
'tatoeba_0hn': tatoeba_0hn_eval_dataset,
'wikimatrix_3hn': wikimatrix_3hn_eval_ds,
#'wikimatrix_0hn': wikimatrix_0hn_eval_ds,
'wikipedia_abstract_3hn': wikipedia_abstract_3hn_eval_dataset,
'wikipedia_abstract_0hn': wikipedia_abstract_0hn_eval_dataset,
'wiktionary_gdg_de_3hn': wiktionary_gdg_de_3hn_eval_ds,
'wiktionary_gdg_de_short': wiktionary_gdg_de_short_eval_dataset,
'wmt24pp': wmt24pp_eval_dataset,
'synthia_de': synthia_de_eval_dataset,
'gbp_3hn': gbp_3hn_eval_ds,
#'gbp_0hn': gbp_0hn_eval_ds,
'gbp_ende_3hn': gbp_ende_3hn_eval_ds,
#'gbp_ende_0hn': gbp_ende_0hn_eval_ds,
#'stbs_de': stbs_de_eval_dataset,
'stbs_de_3hn': stbs_de_3hn_eval_dataset,
#'stbs_en': stbs_en_eval_dataset,
'stbs_en_3hn': stbs_en_3hn_eval_dataset,
'pawsx_de': pawsx_de_eval_dataset,
'pawsx_en': pawsx_en_eval_dataset,
'nli_anli_entail_3hn': de_anli_entail_3hn_eval_ds,
'nli_fever_entail_3hn': de_fever_entail_3hn_eval_ds,
'nli_ling_entail_3hn': de_ling_entail_3hn_eval_ds,
'nli_mnli_entail_3hn': de_mnli_entail_3hn_eval_ds,
'nli_wanli_entail_3hn': de_wanli_entail_3hn_eval_ds,
#'nli_anli_entail_0hn': de_anli_entail_0hn_eval_ds,
#'nli_fever_entail_0hn': de_fever_entail_0hn_eval_ds,
#'nli_ling_entail_0hn': de_ling_entail_0hn_eval_ds,
#'nli_mnli_entail_0hn': de_mnli_entail_0hn_eval_ds,
#'nli_wanli_entail_0hn': de_wanli_entail_0hn_eval_ds,
'nli_anli_transl_3hn': de_anli_transl_3hn_eval_ds,
'nli_fever_transl_3hn': de_fever_transl_3hn_eval_ds,
'nli_ling_transl_3hn': de_ling_transl_3hn_eval_ds,
'nli_mnli_transl_3hn': de_mnli_transl_3hn_eval_ds,
'nli_wanli_transl_3hn': de_wanli_transl_3hn_eval_ds,
#'nli_anli_transl_0hn': de_anli_transl_0hn_eval_ds,
#'nli_fever_transl_0hn': de_fever_transl_0hn_eval_ds,
#'nli_ling_transl_0hn': de_ling_transl_0hn_eval_ds,
#'nli_mnli_transl_0hn': de_mnli_transl_0hn_eval_ds,
#'nli_wanli_transl_0hn': de_wanli_transl_0hn_eval_ds,
'jina_ai_3en': jina_ai_ps_eval_3en,
'jina_ai_ende': jina_ai_ps_eval_en_de,
'jina_ai_dede': jina_ai_ps_eval_de_de,
'polyglot_de': polyglot_de_eval_dataset,
'polyglot_en': polyglot_en_eval_dataset,
'tilde_EESC': tilde_EESC_eval_dataset,
#'tilde_RAPID': tilde_RAPID_eval_dataset,
'miracl_de_3hn': miracl_de_eval_dataset,
'miracl_de_0hn': miracl_de_0hn_eval_dataset,
})
#
train_dataset.save_to_disk("base_datasets/train_dataset")
eval_dataset.save_to_disk("base_datasets/eval_dataset")
#
end_time = timer()
print('Time for preprocessing (minutes): '+str(round((end_time - start_time)/60, 3))) # the cheapest full timer one can get.
# The `train_test_split` calls have put a lot of the datasets in memory, while we want it to just be on disk
# So we're calling quit() here. Running the script again will load the datasets from disk.
quit()
def main():
# 1. Load a model to finetune with 2. (Optional) model card data
static_embedding = StaticEmbedding(AutoTokenizer.from_pretrained(f"{tokenizer_model}"), embedding_dim=2048)
model = SentenceTransformer(
modules=[static_embedding],
model_card_data=SentenceTransformerModelCardData(
language="de, en",
license="eupl-1.2",
model_name=f"A static embedding model tokenized with {tokenizer_model} and mainly built on DE/EN-datasets.",
),
)
#
# 3. Set up training & evaluation datasets - each dataset is trained with MNRL (with MRL)
train_dataset, eval_dataset = load_train_eval_datasets()
print(train_dataset)
#
# 4. Define a loss function
# sadly at the moment neither CachedMultipleNegativesRankingLoss or GISTEmbedLoss work with StaticEmbedding.
loss = MultipleNegativesRankingLoss(model)
loss = MatryoshkaLoss(model, loss, matryoshka_dims=[32, 64, 128, 256, 512, 1024, 2048])
#
# 5. (Optional) Specify training arguments
# check for GPU support (using already loaded tensorflow)
if len(tf.config.list_physical_devices('GPU')) > 0:
fp16=True
bf16=False
else:
fp16=False
bf16=True
## manual override
#fp16=False
#bf16=False
run_name = f"{sts_basename}-v{version}"
args = SentenceTransformerTrainingArguments(
# Required parameter:
output_dir=f"models/{run_name}",
# Optional training parameters:
num_train_epochs=1, # original 1 - if 2 epochs deliver worse results, it's already overfitting.
per_device_train_batch_size=1024 * 4, # original 2048 - suggestions are 16384 (but beware of the GPU-RAM(!))
per_device_eval_batch_size=1024 * 4, # original 2048
learning_rate=2e-1,
lr_scheduler_type="cosine", # instead of 'linear'
warmup_ratio=0.1,
fp16=fp16, # Set to False if you get an error that your GPU can't run on FP16
bf16=bf16, # Set to True if you have a GPU that supports BF16
batch_sampler=BatchSamplers.NO_DUPLICATES, # MultipleNegativesRankingLoss benefits from no duplicate samples in a batch
multi_dataset_batch_sampler=MultiDatasetBatchSamplers.PROPORTIONAL,
# Optional tracking/debugging parameters:
eval_strategy="steps",
eval_steps=500,
save_strategy="steps",
save_steps=1000,
save_total_limit=2,
logging_steps=500,
logging_first_step=True,
run_name=run_name, # Will be used in W&B if `wandb` is installed
)
#
# 6. Create a trainer & train
trainer = SentenceTransformerTrainer(
model=model,
args=args,
train_dataset=train_dataset,
eval_dataset=eval_dataset,
loss=loss,
)
trainer.train()
#
# 7. Save the trained model
model.save_pretrained(f"models/{run_name}/final")
#
# 8. (Optional) Push it to the Hugging Face Hub
#model.push_to_hub(run_name, private=True)
#
# 9. Quick testing the model with NanoBEIR
## found at: https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#nanobeirevaluator
evaluator = NanoBEIREvaluator(show_progress_bar=True)
results = evaluator(model)
print('\n' + str(results[evaluator.primary_metric]))
# STARTER
if __name__ == "__main__":
start_time = timer()
main()
end_time = timer()
print('Time for training (minutes): '+str(round((end_time - start_time)/60, 3))) # the cheapest full timer one can get.
|