|
--- |
|
tags: |
|
- sentence-transformers |
|
- sentence-similarity |
|
- feature-extraction |
|
- generated_from_trainer |
|
- loss:MultipleNegativesRankingLoss |
|
- mteb |
|
base_model: NAMAA-Space/AraModernBert-Base-V1.0 |
|
widget: |
|
- source_sentence: الذكاء الاصطناعي يغير طريقة تفاعلنا مع التكنولوجيا. |
|
sentences: |
|
- التكنولوجيا تتطور بسرعة بفضل الذكاء الاصطناعي. |
|
- الذكاء الاصطناعي يسهم في تطوير التطبيقات الذكية. |
|
- تحديات الذكاء الاصطناعي تشمل الحفاظ على الأمان والأخلاقيات. |
|
pipeline_tag: sentence-similarity |
|
library_name: sentence-transformers |
|
metrics: |
|
- pearson_cosine |
|
- spearman_cosine |
|
model-index: |
|
- name: NAMAA-Space/AraModernBert-Base-V1.0 |
|
results: |
|
- dataset: |
|
config: ar-ar |
|
name: MTEB STS17 (ar-ar) |
|
revision: faeb762787bd10488a50c8b5be4a3b82e411949c |
|
split: test |
|
type: mteb/sts17-crosslingual-sts |
|
metrics: |
|
- type: pearson |
|
value: 82.4888 |
|
- type: spearman |
|
value: 83.0981 |
|
- type: cosine_pearson |
|
value: 82.4888 |
|
- type: cosine_spearman |
|
value: 83.1109 |
|
- type: manhattan_pearson |
|
value: 81.2051 |
|
- type: manhattan_spearman |
|
value: 83.0197 |
|
- type: euclidean_pearson |
|
value: 81.1013 |
|
- type: euclidean_spearman |
|
value: 82.8922 |
|
- type: main_score |
|
value: 83.1109 |
|
task: |
|
type: STS |
|
- dataset: |
|
config: ar |
|
name: MTEB STS22.v2 (ar) |
|
revision: d31f33a128469b20e357535c39b82fb3c3f6f2bd |
|
split: test |
|
type: mteb/sts22-crosslingual-sts |
|
metrics: |
|
- type: pearson |
|
value: 52.58540000000001 |
|
- type: spearman |
|
value: 61.7371 |
|
- type: cosine_pearson |
|
value: 52.58540000000001 |
|
- type: cosine_spearman |
|
value: 61.7371 |
|
- type: manhattan_pearson |
|
value: 55.887299999999996 |
|
- type: manhattan_spearman |
|
value: 61.3654 |
|
- type: euclidean_pearson |
|
value: 55.633500000000005 |
|
- type: euclidean_spearman |
|
value: 61.2124 |
|
- type: main_score |
|
value: 61.7371 |
|
task: |
|
type: STS |
|
license: apache-2.0 |
|
language: |
|
- ar |
|
--- |
|
|
|
# SentenceTransformer based on NAMAA-Space/AraModernBert-Base-V1.0 |
|
|
|
This SentenceTransformer is fine-tuned from [NAMAA-Space/AraModernBert-Base-V1.0](https://huggingface.co/NAMAA-Space/AraModernBert-Base-V1.0), bringing strong arabic embeddings useful for a multiple of use cases. |
|
|
|
🔹 **768-dimensional dense vectors** 🎯 |
|
🔹 **Excels in**: Semantic Similarity, Search, Paraphrase Mining, Clustering, Text Classification & More! |
|
🔹 **Optimized for speed & efficiency** without sacrificing performance |
|
|
|
Whether you're building intelligent search engines, chatbots, or AI-powered knowledge graphs, this model delivers meaningful representations of Arabic text with precision and depth. |
|
|
|
Try it out & bring Arabic NLP to the next level! 🔥✨ |
|
|
|
### Full Model Architecture |
|
|
|
``` |
|
SentenceTransformer( |
|
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: ModernBertModel |
|
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True}) |
|
) |
|
``` |
|
|
|
## Usage |
|
|
|
### Direct Usage (Sentence Transformers) |
|
|
|
First install the Sentence Transformers library: |
|
|
|
```bash |
|
pip install -U sentence-transformers |
|
``` |
|
|
|
Then you can load this model and run inference. |
|
```python |
|
from sentence_transformers import SentenceTransformer |
|
|
|
# Download from the 🤗 Hub |
|
model = SentenceTransformer("NAMAA-Space/AraModernBert-Base-STS") |
|
# Run inference |
|
sentences = [ |
|
'الذكاء الاصطناعي يغير طريقة تفاعلنا مع التكنولوجيا.', |
|
'التكنولوجيا تتطور بسرعة بفضل الذكاء الاصطناعي.', |
|
'الذكاء الاصطناعي يسهم في تطوير التطبيقات الذكية.', |
|
] |
|
embeddings = model.encode(sentences) |
|
print(embeddings.shape) |
|
# [3, 768] |
|
|
|
# Get the similarity scores for the embeddings |
|
similarities = model.similarity(embeddings, embeddings) |
|
print(similarities.shape) |
|
# [3, 3] |
|
``` |
|
|
|
## Evaluation |
|
|
|
### Metrics |
|
|
|
#### Semantic Similarity |
|
|
|
* Datasets: ` STS17` and `STS22.v2` |
|
* Evaluated with [<code>EmbeddingSimilarityEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator) |
|
|
|
| Metric | STS17 | STS22.v2 | |
|
|:--------------------|:----------|:-----------| |
|
| pearson_cosine | 0.8249 | 0.5259 | |
|
| **spearman_cosine** | **0.831** | **0.6169** | |
|
|
|
<!-- |
|
## Bias, Risks and Limitations |
|
|
|
*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.* |
|
--> |
|
|
|
<!-- |
|
### Recommendations |
|
|
|
*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.* |
|
--> |
|
|
|
### Framework Versions |
|
- Python: 3.10.12 |
|
- Sentence Transformers: 3.4.1 |
|
- Transformers: 4.49.0 |
|
- PyTorch: 2.1.0+cu118 |
|
- Accelerate: 1.4.0 |
|
- Datasets: 2.21.0 |
|
- Tokenizers: 0.21.0 |
|
|
|
## Citation |
|
|
|
### BibTeX |
|
|
|
#### Sentence Transformers |
|
```bibtex |
|
@inproceedings{reimers-2019-sentence-bert, |
|
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks", |
|
author = "Reimers, Nils and Gurevych, Iryna", |
|
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing", |
|
month = "11", |
|
year = "2019", |
|
publisher = "Association for Computational Linguistics", |
|
url = "https://arxiv.org/abs/1908.10084", |
|
} |
|
``` |
|
|
|
#### MultipleNegativesRankingLoss |
|
```bibtex |
|
@misc{henderson2017efficient, |
|
title={Efficient Natural Language Response Suggestion for Smart Reply}, |
|
author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil}, |
|
year={2017}, |
|
eprint={1705.00652}, |
|
archivePrefix={arXiv}, |
|
primaryClass={cs.CL} |
|
} |
|
``` |