omarelshehy's picture
Update README.md
cc3cb85 verified
---
tags:
- sentence-transformers
- sentence-similarity
- feature-extraction
- generated_from_trainer
- loss:MultipleNegativesRankingLoss
- mteb
base_model: NAMAA-Space/AraModernBert-Base-V1.0
widget:
- source_sentence: الذكاء الاصطناعي يغير طريقة تفاعلنا مع التكنولوجيا.
sentences:
- التكنولوجيا تتطور بسرعة بفضل الذكاء الاصطناعي.
- الذكاء الاصطناعي يسهم في تطوير التطبيقات الذكية.
- تحديات الذكاء الاصطناعي تشمل الحفاظ على الأمان والأخلاقيات.
pipeline_tag: sentence-similarity
library_name: sentence-transformers
metrics:
- pearson_cosine
- spearman_cosine
model-index:
- name: NAMAA-Space/AraModernBert-Base-V1.0
results:
- dataset:
config: ar-ar
name: MTEB STS17 (ar-ar)
revision: faeb762787bd10488a50c8b5be4a3b82e411949c
split: test
type: mteb/sts17-crosslingual-sts
metrics:
- type: pearson
value: 82.4888
- type: spearman
value: 83.0981
- type: cosine_pearson
value: 82.4888
- type: cosine_spearman
value: 83.1109
- type: manhattan_pearson
value: 81.2051
- type: manhattan_spearman
value: 83.0197
- type: euclidean_pearson
value: 81.1013
- type: euclidean_spearman
value: 82.8922
- type: main_score
value: 83.1109
task:
type: STS
- dataset:
config: ar
name: MTEB STS22.v2 (ar)
revision: d31f33a128469b20e357535c39b82fb3c3f6f2bd
split: test
type: mteb/sts22-crosslingual-sts
metrics:
- type: pearson
value: 52.58540000000001
- type: spearman
value: 61.7371
- type: cosine_pearson
value: 52.58540000000001
- type: cosine_spearman
value: 61.7371
- type: manhattan_pearson
value: 55.887299999999996
- type: manhattan_spearman
value: 61.3654
- type: euclidean_pearson
value: 55.633500000000005
- type: euclidean_spearman
value: 61.2124
- type: main_score
value: 61.7371
task:
type: STS
license: apache-2.0
language:
- ar
---
# SentenceTransformer based on NAMAA-Space/AraModernBert-Base-V1.0
This SentenceTransformer is fine-tuned from [NAMAA-Space/AraModernBert-Base-V1.0](https://huggingface.co/NAMAA-Space/AraModernBert-Base-V1.0), bringing strong arabic embeddings useful for a multiple of use cases.
🔹 **768-dimensional dense vectors** 🎯
🔹 **Excels in**: Semantic Similarity, Search, Paraphrase Mining, Clustering, Text Classification & More!
🔹 **Optimized for speed & efficiency** without sacrificing performance
Whether you're building intelligent search engines, chatbots, or AI-powered knowledge graphs, this model delivers meaningful representations of Arabic text with precision and depth.
Try it out & bring Arabic NLP to the next level! 🔥✨
### Full Model Architecture
```
SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: ModernBertModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
)
```
## Usage
### Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
```bash
pip install -U sentence-transformers
```
Then you can load this model and run inference.
```python
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("NAMAA-Space/AraModernBert-Base-STS")
# Run inference
sentences = [
'الذكاء الاصطناعي يغير طريقة تفاعلنا مع التكنولوجيا.',
'التكنولوجيا تتطور بسرعة بفضل الذكاء الاصطناعي.',
'الذكاء الاصطناعي يسهم في تطوير التطبيقات الذكية.',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
```
## Evaluation
### Metrics
#### Semantic Similarity
* Datasets: ` STS17` and `STS22.v2`
* Evaluated with [<code>EmbeddingSimilarityEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator)
| Metric | STS17 | STS22.v2 |
|:--------------------|:----------|:-----------|
| pearson_cosine | 0.8249 | 0.5259 |
| **spearman_cosine** | **0.831** | **0.6169** |
<!--
## Bias, Risks and Limitations
*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
-->
<!--
### Recommendations
*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
-->
### Framework Versions
- Python: 3.10.12
- Sentence Transformers: 3.4.1
- Transformers: 4.49.0
- PyTorch: 2.1.0+cu118
- Accelerate: 1.4.0
- Datasets: 2.21.0
- Tokenizers: 0.21.0
## Citation
### BibTeX
#### Sentence Transformers
```bibtex
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
```
#### MultipleNegativesRankingLoss
```bibtex
@misc{henderson2017efficient,
title={Efficient Natural Language Response Suggestion for Smart Reply},
author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
year={2017},
eprint={1705.00652},
archivePrefix={arXiv},
primaryClass={cs.CL}
}
```