vla-adapter-gr00t-g1-bridgeattention / policy_definition.py
Nirav-Madhani's picture
Add BridgeAttention adapter + config + policy definition
fdb2753 verified
import math, torch
import torch.nn as nn
from einops import repeat
class BridgeAttentionPolicy(nn.Module):
def __init__(self, v_hidden, t_hidden, state_dim, policy_dim, n_heads, n_layers, n_queries, action_dim, dropout=0.1):
super().__init__()
self.n_queries = n_queries
self.query = nn.Parameter(torch.randn(n_queries, policy_dim) / math.sqrt(policy_dim))
self.v_proj = nn.Linear(v_hidden, policy_dim)
self.t_proj = nn.Linear(t_hidden, policy_dim)
self.s_proj = nn.Linear(state_dim, policy_dim)
self.alpha_v = nn.Parameter(torch.tensor(0.7))
self.alpha_t = nn.Parameter(torch.tensor(0.7))
self.alpha_s = nn.Parameter(torch.tensor(0.7))
enc = nn.TransformerEncoderLayer(d_model=policy_dim, nhead=n_heads, dim_feedforward=policy_dim*4,
dropout=dropout, activation="gelu", batch_first=True, norm_first=True)
self.blocks = nn.TransformerEncoder(enc, num_layers=n_layers)
self.norm = nn.LayerNorm(policy_dim)
self.head = nn.Sequential(nn.Linear(policy_dim, policy_dim), nn.GELU(), nn.Linear(policy_dim, action_dim))
def forward(self, v_feats_layers, t_feats_layers, state_vec):
B = state_vec.size(0)
v_cat = torch.cat(v_feats_layers, dim=1) if v_feats_layers else None
t_cat = torch.cat(t_feats_layers, dim=1)
s_tok = self.s_proj(state_vec).unsqueeze(1)
toks = [s_tok]
if v_cat is not None:
toks.append(self.v_proj(v_cat) * torch.sigmoid(self.alpha_v))
toks.append(self.t_proj(t_cat) * torch.sigmoid(self.alpha_t))
ctx = torch.cat(toks, dim=1)
q = repeat(self.query, 'Q D -> B Q D', B=B)
tokens = torch.cat([q, ctx], dim=1)
tokens = self.blocks(tokens)
pooled = self.norm(tokens[:, :self.n_queries].mean(dim=1))
return self.head(pooled)