|
--- |
|
license: apache-2.0 |
|
datasets: |
|
- ciol-research/global-festivals-wiki |
|
- WorkWithData/cities |
|
- Yelp/yelp_review_full |
|
- dair-ai/emotion |
|
language: |
|
- en |
|
- kn |
|
- hi |
|
- es |
|
- zh |
|
- te |
|
- de |
|
- ko |
|
- sq |
|
- fr |
|
- id |
|
- pl |
|
- it |
|
- vi |
|
- tr |
|
- ru |
|
- he |
|
- ar |
|
- fa |
|
- bn |
|
- th |
|
- ja |
|
base_model: |
|
- google/gemma-3-1b-it |
|
pipeline_tag: text-generation |
|
--- |
|
# Gemma-3-1B Event-Planner (4-bit QLoRA) |
|
|
|
**Adapter-only repo** for a culturally sensitive event-planning assistant fine-tuned via LoRA on `google/gemma-3-1b-it`. |
|
This adapter (~50 MB) can be applied to the 4-bit base model at inference time, so you don’t need to ship multi-GB merged weights. |
|
|
|
**Base model:** google/gemma-3-4b-it |
|
**Fine-tuned with:** LoRA r=8, α=32, dropout=0.05, 4-bit NF4 quant. |
|
|
|
## Intended use |
|
Generates culturally sensitive event plans (weddings, baby-naming, college fests …). |
|
Asks clarifying questions about culture, guest count, budget, dietary needs. |
|
|
|
## Training data |
|
* dair-ai/emotion (3 k / 0.5 k) |
|
* ciol-research/global-festivals-wiki (9 k / 1 k) |
|
* corbt/all-recipes (15 k / 1.5 k) |
|
* WorkWithData/cities (6 k / 1 k) |
|
* Yelp/yelp_review_full (12 k / 2 k) |
|
|
|
--- |
|
|
|
## Model Details |
|
|
|
- **Base model**: `google/gemma-3-1b-it` (4 B parameters, instruction-tuned) |
|
- **Quantization**: 4-bit NF4 via `bitsandbytes` |
|
- **LoRA config**: |
|
- rank `r = 8` |
|
- α = 32 |
|
- dropout = 0.05 |
|
- target modules = `["q_proj","v_proj"]` |
|
- **Trainable params**: ~0.75 M (0.07 % of base) |
|
|
|
### Fine-tuning data (≈ 75 k examples total) |
|
|
|
| Domain | Dataset | Train / Val | Why included | |
|
|----------------------|------------------------------------------|---------------|-----------------------------------------| |
|
| Emotion & Tone | `dair-ai/emotion` | 3 k / 0.5 k | Adapt style & follow-up questioning | |
|
| Cultural Festivals | `ciol-research/global-festivals-wiki` | 9 k / 1 k | Rituals, symbols, dates across cultures | |
|
| Cuisine & Menus | `corbt/all-recipes` | 15 k / 1.5 k | Authentic recipes for menu planning | |
|
| Venue / Geodata | `WorkWithData/cities` | 6 k / 1 k | Real cities + coords for location tips | |
|
| Vendors & Services | `Yelp/yelp_review_full` | 12 k / 2 k | Business vocabulary & recommendation tone | |
|
|
|
--- |
|
|
|
## Local Usage |
|
|
|
```py |
|
# Install runtime dependencies: |
|
pip install accelerate==1.7.0 bitsandbytes==0.45.5 peft==0.15.2 sentencepiece==0.2.0 torch==2.7.0 transformers==4.51.3 trl==0.17.0 |
|
|
|
# Load the 4-bit base + adapter: |
|
import torch |
|
from transformers import ( |
|
AutoTokenizer, |
|
AutoModelForCausalLM, |
|
BitsAndBytesConfig, |
|
pipeline, |
|
) |
|
from peft import PeftModel |
|
|
|
# 1. Quant config |
|
bnb_cfg = BitsAndBytesConfig( |
|
load_in_4bit = True, |
|
bnb_4bit_quant_type = "nf4", |
|
bnb_4bit_use_double_quant = True, |
|
bnb_4bit_compute_dtype = torch.float16, |
|
) |
|
|
|
# 2. Tokenizer |
|
BASE = "google/gemma-3-1b-it" |
|
tokenizer = AutoTokenizer.from_pretrained( |
|
BASE, |
|
trust_remote_code=True, |
|
use_auth_token=True, |
|
) |
|
|
|
# 3. Base model |
|
base = AutoModelForCausalLM.from_pretrained( |
|
BASE, |
|
quantization_config=bnb_cfg, |
|
device_map="auto", |
|
torch_dtype=torch.float16, |
|
trust_remote_code=True, |
|
use_auth_token=True, |
|
) |
|
|
|
# 4. LoRA adapter |
|
ADAPTER = "PranavKeshav/event-planner-gemma-4bit" |
|
model = PeftModel.from_pretrained( |
|
base, |
|
ADAPTER, |
|
device_map="auto", |
|
torch_dtype=torch.float16, |
|
use_auth_token=True, |
|
) |
|
model.eval() |
|
|
|
# 5. Pipeline |
|
pipe = pipeline( |
|
"text-generation", |
|
model=model, |
|
tokenizer=tokenizer, |
|
device_map="auto", |
|
max_new_tokens=150, |
|
temperature=0.7, |
|
top_p=0.9, |
|
) |
|
|
|
# 6. Test |
|
print(pipe("Plan a Gujarati wedding for 120 guests in Ahmedabad.")[0]["generated_text"]) |
|
``` |
|
|
|
## Model Card & Citation |
|
1. Intended use: Generate culturally sensitive event plans; ask clarifying questions about dates, budgets, dietary needs. |
|
2. Limitations: May hallucinate or miss rare cultural details; verify all critical recommendations. |
|
3. License: Same as google/gemma-3-1b-it (Apache-2.0) + dataset licenses; see individual datasets. |
|
4. Citation: |
|
```bash |
|
@misc{gemma_event_planner_2025, |
|
title = {Gemma-3-4B Event-Planner LoRA Adapter}, |
|
author = {Keshav, Pranav}, |
|
year = {2025}, |
|
howpublished = {\url{https://huggingface.co/YOUR_USERNAME/event-planner-gemma-4bit}} |
|
} |
|
``` |