Update README.md
Browse files
README.md
CHANGED
@@ -1,335 +1,114 @@
|
|
1 |
---
|
|
|
2 |
language:
|
3 |
- en
|
4 |
-
license: mit
|
5 |
-
library_name: transformers
|
6 |
-
# Using text-to-video as the pipeline tag since the model generates action sequences from vision and language inputs
|
7 |
-
pipeline_tag: text-to-video
|
8 |
-
datasets:
|
9 |
-
- lerobot/robot_sim.PickNPlace
|
10 |
-
- lerobot/so100_strawberry_grape
|
11 |
-
base_model: NVEagle/eagle_er-qwen3_1_7B-Siglip2_400M_stage1_5_128gpu_er_v7_1mlp_nops
|
12 |
tags:
|
13 |
- robotics
|
14 |
-
-
|
15 |
-
-
|
16 |
- imitation-learning
|
17 |
-
- nvidia
|
18 |
-
- gr00t
|
19 |
-
- gemma
|
20 |
- diffusion-policy
|
21 |
-
-
|
22 |
-
-
|
23 |
-
-
|
24 |
-
-
|
25 |
-
- robot-manipulation
|
26 |
-
- computer-vision
|
27 |
-
- natural-language-processing
|
28 |
-
- deep-learning
|
29 |
-
- transformer
|
30 |
-
- vision-transformer
|
31 |
-
- flow-matching
|
32 |
-
- foundation-model
|
33 |
-
- multi-modal
|
34 |
-
- human-robot-interaction
|
35 |
-
- autonomous-robots
|
36 |
-
- robot-control
|
37 |
-
- robot-perception
|
38 |
-
- robot-vision
|
39 |
---
|
40 |
|
41 |
-
# Gemma-
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
-
-
|
54 |
-
-
|
55 |
-
-
|
56 |
-
-
|
57 |
-
-
|
58 |
-
|
59 |
-
|
60 |
-
|
61 |
-
|
62 |
-
|
63 |
-
|
64 |
-
-
|
65 |
-
|
66 |
-
|
67 |
-
|
68 |
-
|
69 |
-
|
70 |
-
|
71 |
-
|
72 |
-
|
73 |
-
|
74 |
-
|
75 |
-
|
76 |
-
|
77 |
-
|
78 |
-
|
79 |
-
|
80 |
-
- Base Model: [google/siglip-base-patch16-224](https://huggingface.co/google/siglip-base-patch16-224)
|
81 |
-
- Type: Vision Transformer (ViT)
|
82 |
-
- Patch Size: 16x16
|
83 |
-
- Image Size: 224x224
|
84 |
-
- Hidden Size: 768
|
85 |
-
- Layers: 12
|
86 |
-
- Attention Heads: 12
|
87 |
-
- Features:
|
88 |
-
- Strong visual representation learning
|
89 |
-
- Excellent zero-shot classification capabilities
|
90 |
-
- Robust to various visual domains
|
91 |
-
|
92 |
-
4. **Action Head**: Diffusion-based Policy
|
93 |
-
- Type: Flow-matching action head
|
94 |
-
- Architecture: 4-layer transformer (ScaledDP)
|
95 |
-
- Hidden Size: 512
|
96 |
-
- Feed-Forward Size: 2,048
|
97 |
-
- Attention Heads: 8
|
98 |
-
- Features:
|
99 |
-
- Generates smooth, continuous actions for robotic control
|
100 |
-
- Uses diffusion process for action generation
|
101 |
-
|
102 |
-
## Training & Evaluation
|
103 |
-
|
104 |
-
### Training Performance
|
105 |
-
|
106 |
-
- **Total Training Steps**: 30,000
|
107 |
-
- **Final Epoch**: 114.5
|
108 |
-
- **Initial Loss**: 1.27
|
109 |
-
- **Final Loss**: 0.11
|
110 |
-
- **Learning Rate**: Warmup to 1e-5 with gradual decay
|
111 |
-
- **Gradient Norm**: Stabilized around 0.3-1.0 (initial: 11.1)
|
112 |
-
|
113 |
-
### Recommended Evaluation Metrics
|
114 |
-
|
115 |
-
#### Task Performance
|
116 |
-
- **Success Rate**: Percentage of successful task completions
|
117 |
-
- **Path Length**: Efficiency of movement (shorter paths are better)
|
118 |
-
- **Smoothness**: L2 norm of action derivatives (lower is smoother)
|
119 |
-
- **Goal Distance**: Final distance to target position
|
120 |
-
- **Success Rate at k (SR@k)**: Success rate within k attempts
|
121 |
-
|
122 |
-
#### Model Accuracy
|
123 |
-
- **Action MSE**: Mean squared error of predicted vs. ground truth actions
|
124 |
-
- **Per-Joint Position Error**: Error for each degree of freedom
|
125 |
-
- **Gripper Accuracy**: Binary classification of gripper state
|
126 |
-
- **Trajectory Error**: Dynamic Time Warping (DTW) distance from reference
|
127 |
-
|
128 |
-
#### System Efficiency
|
129 |
-
- **Inference Time**: Per-step latency (ms)
|
130 |
-
- **Memory Usage**: Peak GPU memory consumption (GB)
|
131 |
-
- **FLOPS**: Computational requirements
|
132 |
-
- **Throughput**: Steps/second during inference
|
133 |
-
|
134 |
-
#### Robustness
|
135 |
-
- **Success Rate under Noise**: Performance with added sensor noise
|
136 |
-
- **Generalization**: Performance on unseen objects/scenes
|
137 |
-
- **Failure Mode Analysis**: Categorization of common failures
|
138 |
-
- **Recovery Rate**: Ability to recover from perturbations
|
139 |
-
|
140 |
-
### Evaluation Protocol
|
141 |
-
|
142 |
-
1. **Test Environments**
|
143 |
-
- Fixed initial conditions
|
144 |
-
- Multiple random seeds (recommended: 5+)
|
145 |
-
- Human baseline comparison
|
146 |
-
- Ablation studies
|
147 |
-
|
148 |
-
2. **Visualization**
|
149 |
-
- Trajectory plots (ground truth vs predicted)
|
150 |
-
- Attention heatmaps
|
151 |
-
- Failure case analysis
|
152 |
-
- Action distribution plots
|
153 |
-
|
154 |
-
3. **Reporting**
|
155 |
-
- Mean and standard deviation across seeds
|
156 |
-
- Statistical significance testing
|
157 |
-
- Compute requirements (GPU hours, memory)
|
158 |
-
- Hyperparameter sensitivity analysis
|
159 |
-
- Processes both visual and language conditioning
|
160 |
-
|
161 |
-
5. **Training Configuration**:
|
162 |
-
- Optimizer: AdamW (lr=1e-4, weight_decay=1e-6)
|
163 |
-
- Diffusion Steps: 100
|
164 |
-
- Chunk Size: 16
|
165 |
-
- Action Steps: 8
|
166 |
-
- Observation Steps: 1
|
167 |
-
|
168 |
-
The model processes visual inputs through the SigLIP vision encoder and textual instructions through the Qwen3-1.7B language model, then fuses these representations in the Eagle2.5 backbone to generate precise control actions via the diffusion-based policy head. The architecture is specifically designed for real-time robotic control with low-latency inference.
|
169 |
-
|
170 |
-
## Uses
|
171 |
-
|
172 |
-
### Direct Use
|
173 |
-
|
174 |
-
This model is part of the [Gemma-GR00T](https://github.com/Ryukijano/Gemma-Grook) project and is designed for research and development of robotic manipulation systems. It can be used for:
|
175 |
-
|
176 |
-
- Robotic arm manipulation tasks (pick-and-place, assembly, etc.)
|
177 |
-
- Sim-to-real transfer learning in robotics
|
178 |
-
- Multimodal robotic control with natural language instructions
|
179 |
-
- Research in reinforcement and imitation learning for robotics
|
180 |
-
- Integration with the [LeRobot](https://github.com/huggingface/lerobot) ecosystem
|
181 |
-
|
182 |
-
### Related Projects
|
183 |
-
|
184 |
-
- [LeRobot](https://github.com/huggingface/lerobot): The base framework used for training
|
185 |
-
- [GR00T](https://developer.nvidia.com/gr00t): NVIDIA's foundation model for humanoid robots
|
186 |
-
- [Gemma](https://huggingface.co/google/gemma-7b): The language model backbone
|
187 |
-
|
188 |
-
### Out-of-Scope Use
|
189 |
-
|
190 |
-
This model is not intended for:
|
191 |
-
- Critical systems where failure could lead to harm
|
192 |
-
- Applications without proper safety measures
|
193 |
-
- Real-time control without thorough testing
|
194 |
-
- Non-robotic applications
|
195 |
-
|
196 |
-
## How to Use
|
197 |
-
|
198 |
-
### Installation
|
199 |
-
|
200 |
-
```bash
|
201 |
-
pip install -r requirements.txt
|
202 |
```
|
203 |
|
204 |
-
|
|
|
205 |
|
|
|
206 |
```python
|
207 |
-
from transformers import AutoModelForCausalLM, AutoConfig
|
208 |
-
|
209 |
-
# Load the model
|
210 |
-
model = AutoModelForCausalLM.from_pretrained("path/to/exported_weights")
|
211 |
-
```
|
212 |
-
|
213 |
-
### Inference Example
|
214 |
-
|
215 |
-
```python
|
216 |
-
# Example code for running inference with the model
|
217 |
import torch
|
218 |
-
|
219 |
-
|
220 |
-
|
221 |
-
|
222 |
-
|
223 |
-
# Run model inference
|
224 |
-
with torch.no_grad():
|
225 |
-
actions = model(**inputs)
|
226 |
-
|
227 |
-
return actions
|
228 |
```
|
229 |
|
230 |
-
|
231 |
-
|
232 |
-
|
233 |
-
|
234 |
-
|
235 |
-
|
236 |
-
|
237 |
-
|
238 |
-
|
239 |
-
|
240 |
-
|
241 |
-
-
|
242 |
-
|
243 |
-
|
244 |
-
|
245 |
-
|
246 |
-
-
|
247 |
-
|
248 |
-
|
249 |
-
- **Hardware:** 3× NVIDIA L40S GPUs
|
250 |
-
- **Framework:** PyTorch with Hugging Face Transformers
|
251 |
-
|
252 |
-
### Data Processing
|
253 |
-
|
254 |
-
The model processes the following modalities from the LeRobot dataset:
|
255 |
-
- **Visual Inputs:** Processed through a vision encoder
|
256 |
-
- **Proprioception:** Arm joint states and gripper status
|
257 |
-
- **Actions:** 32-dimensional continuous action space
|
258 |
-
- **Language Instructions:** Natural language task descriptions
|
259 |
-
|
260 |
-
### Training Procedure
|
261 |
-
|
262 |
-
The model was trained using a combination of:
|
263 |
-
- Imitation learning from demonstration data
|
264 |
-
- Reinforcement learning with PPO
|
265 |
-
- Behavior cloning
|
266 |
-
|
267 |
-
## Evaluation
|
268 |
-
|
269 |
-
### Metrics
|
270 |
-
|
271 |
-
- **Success Rate:** 85% on validation tasks
|
272 |
-
- **Task Completion:** 90% of tasks completed successfully
|
273 |
-
- **Generalization:** 75% success on unseen objects
|
274 |
-
|
275 |
-
### Results
|
276 |
-
|
277 |
-
| Task | Success Rate |
|
278 |
-
|------|-------------:|
|
279 |
-
| Pick and Place | 88% |
|
280 |
-
| Object Stacking | 83% |
|
281 |
-
| Tool Use | 79% |
|
282 |
-
| Multi-step Tasks | 72% |
|
283 |
-
|
284 |
-
## Limitations and Bias
|
285 |
-
|
286 |
-
- The model's performance is highly dependent on the quality and diversity of the training data.
|
287 |
-
- May not generalize well to completely novel objects or environments.
|
288 |
-
- Performance may degrade in cluttered or highly dynamic environments.
|
289 |
-
- Safety mechanisms should be implemented for real-world deployment.
|
290 |
-
|
291 |
-
## Environmental Impact
|
292 |
-
|
293 |
-
- **Carbon Emissions:** Estimated 120 kg CO2eq
|
294 |
-
- **Hardware Type:** NVIDIA L40S GPUs
|
295 |
-
- **Hours used:** 240
|
296 |
-
- **Cloud Provider:** Private cluster
|
297 |
-
- **Compute Region:** UK
|
298 |
-
- **Energy Mix:** 40% renewable
|
299 |
-
|
300 |
-
## Technical Specifications
|
301 |
-
|
302 |
-
### Model Architecture
|
303 |
-
|
304 |
-
- **Parameters:** 1.7B
|
305 |
-
- **Layers:** 16
|
306 |
-
- **Attention Heads:** 32
|
307 |
-
- **Hidden Size:** 2048
|
308 |
-
- **Context Length:** 2048 tokens
|
309 |
-
|
310 |
-
### Hardware and Software
|
311 |
-
|
312 |
-
- **Training Hardware:** 3× NVIDIA L40S GPUs
|
313 |
-
- **Inference Hardware:** NVIDIA L4 or better
|
314 |
-
- **Framework:** PyTorch 2.7.1+
|
315 |
-
- **CUDA Version:** 12.4
|
316 |
-
|
317 |
-
## Citation
|
318 |
-
|
319 |
-
```bibtex
|
320 |
-
@misc{gemmagroot2024,
|
321 |
-
title={Gemma-GR00T: Multimodal Robotic Manipulation with Language Models},
|
322 |
-
author={Your Name},
|
323 |
-
year={2024},
|
324 |
-
publisher={GitHub},
|
325 |
-
howpublished={\url{https://github.com/Ryukijano/Gemma-Grook}},
|
326 |
-
}
|
327 |
```
|
328 |
|
329 |
-
|
330 |
-
|
331 |
-
|
332 |
-
|
333 |
-
|
334 |
-
|
335 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
---
|
2 |
+
license: apache-2.0
|
3 |
language:
|
4 |
- en
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
5 |
tags:
|
6 |
- robotics
|
7 |
+
- vla
|
8 |
+
- lerobot
|
9 |
- imitation-learning
|
|
|
|
|
|
|
10 |
- diffusion-policy
|
11 |
+
- gemma-3
|
12 |
+
- siglip
|
13 |
+
- scaledp
|
14 |
+
- multimodal
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
15 |
---
|
16 |
|
17 |
+
# Gemma-Le: SigLIP + Gemma 3 + ScaleDP (LeRobot VLA Policy)
|
18 |
+
|
19 |
+
Gemma-Le is a compact Vision-Language-Action policy for robotic manipulation built on top of LeRobot.
|
20 |
+
It replaces NV Eagle with standard Hugging Face components:
|
21 |
+
|
22 |
+
- SigLIP `google/siglip-so400m-patch14-384` for vision
|
23 |
+
- Gemma 3 `google/gemma-3-4b-it` for language/reasoning (with LoRA PEFT)
|
24 |
+
- ScaleDP (Scalable Diffusion Transformer) as the action head
|
25 |
+
|
26 |
+
This repo hosts exported checkpoints trained on LeRobot-format datasets (e.g., `robot_sim.PickNPlace`).
|
27 |
+
|
28 |
+
## Architecture
|
29 |
+
- Vision: SigLIP ViT encoder (384px, patch14), pooled embedding
|
30 |
+
- Text: Gemma 3 4B-IT, mean-pooled hidden states
|
31 |
+
- LoRA: rank=16 on `[q_proj, k_proj, v_proj, o_proj]`
|
32 |
+
- Fusion: MLP projects [vision || text] -> `conditioning_dim=768`
|
33 |
+
- Action head: ScaleDP Transformer (layers=12, d_model=320, heads=8, ff=1280) predicts diffusion noise
|
34 |
+
- Temporal context: `chunk_size=8`; diffusion steps `num_diffusion_steps=50`
|
35 |
+
- Mixed precision: AMP auto-selects bf16/fp16; bf16 uses no GradScaler
|
36 |
+
|
37 |
+
## Default config (excerpt)
|
38 |
+
```yaml
|
39 |
+
vision_model_id: google/siglip-so400m-patch14-384
|
40 |
+
text_model_id: google/gemma-3-4b-it
|
41 |
+
image_features: ["observation.images.ego_view"]
|
42 |
+
action_feature: "action"
|
43 |
+
chunk_size: 8
|
44 |
+
num_diffusion_steps: 50
|
45 |
+
conditioning_dim: 768
|
46 |
+
plan_update_interval: 10
|
47 |
+
scaledp_num_layers: 12
|
48 |
+
scaledp_dim_model: 320
|
49 |
+
scaledp_num_heads: 8
|
50 |
+
scaledp_dim_feedforward: 1280
|
51 |
+
use_lora: true
|
52 |
+
lora_rank: 16
|
53 |
+
lora_target_modules: ["q_proj","k_proj","v_proj","o_proj"]
|
54 |
+
optimizer_lr: 1e-4
|
55 |
+
optimizer_weight_decay: 1e-6
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
56 |
```
|
57 |
|
58 |
+
## Usage (with this repo’s LeRobot fork)
|
59 |
+
Install deps and set `PYTHONPATH` to include `lerobot` in this repository.
|
60 |
|
61 |
+
Evaluation-style load:
|
62 |
```python
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
63 |
import torch
|
64 |
+
from lerobot.common.policies.gemma_le.modeling_gemma_le import GemmaLePolicy
|
65 |
+
from huggingface_hub import snapshot_download
|
66 |
+
ckpt_dir = snapshot_download(repo_id="Ryukijano/gemma-groot", revision="main")
|
67 |
+
policy = GemmaLePolicy.from_pretrained(ckpt_dir, torch_dtype=torch.bfloat16)
|
68 |
+
policy.eval()
|
|
|
|
|
|
|
|
|
|
|
69 |
```
|
70 |
|
71 |
+
Training entrypoint:
|
72 |
+
```bash
|
73 |
+
python lerobot/lerobot/scripts/train.py \
|
74 |
+
--policy.type gemma_le \
|
75 |
+
--dataset.repo_id local/robot_sim.PickNPlace \
|
76 |
+
--dataset.root /path/to/robot_sim.PickNPlace \
|
77 |
+
--dataset.episodes "[0,1,2,3,4]" \
|
78 |
+
--batch_size 3 \
|
79 |
+
--steps 200000 \
|
80 |
+
--log_freq 100 \
|
81 |
+
--save_freq 5000 \
|
82 |
+
--policy.vision_model_id google/siglip-so400m-patch14-384 \
|
83 |
+
--policy.text_model_id google/gemma-3-4b-it \
|
84 |
+
--policy.use_amp true \
|
85 |
+
--progress_bar true \
|
86 |
+
--push_to_hub true \
|
87 |
+
--push_repo_id Ryukijano/gemma-groot \
|
88 |
+
--push_branch main \
|
89 |
+
--push_exist_ok true
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
90 |
```
|
91 |
|
92 |
+
### Slurm (3× L40)
|
93 |
+
See `submit_job.sh`. Ensure caches on scratch and set:
|
94 |
+
- `PYTORCH_CUDA_ALLOC_CONF=expandable_segments:True`
|
95 |
+
- `HF_HOME`, `HUGGINGFACE_HUB_CACHE`, `TRANSFORMERS_CACHE` to scratch
|
96 |
+
|
97 |
+
## Checkpoints
|
98 |
+
- Latest runs uploaded under `runs/<date>/<run>/<step>` in this repo.
|
99 |
+
- Example: `runs/2025-08-12/13-06-07_gemma_le/020000/`.
|
100 |
+
|
101 |
+
## Data
|
102 |
+
- LeRobotDataset (parquet + mp4 + metadata). Single RGB view: `observation.images.ego_view`. Targets: `action`.
|
103 |
+
- Timestamp tolerance is auto-relaxed to `max(tolerance_s, 1/fps + 1e-4)` during training for robust decoding.
|
104 |
+
|
105 |
+
## Notes
|
106 |
+
- Base model access: `google/gemma-3-4b-it` may require TOS.
|
107 |
+
- Intended for imitation learning; ThinkAct-style planning can be layered on top.
|
108 |
+
|
109 |
+
## Citations
|
110 |
+
- LeRobot: https://github.com/huggingface/lerobot
|
111 |
+
- Gemma 3: https://ai.google.dev/gemma
|
112 |
+
- SigLIP: https://huggingface.co/timm/ViT-SigLIP
|
113 |
+
- Diffusion Policy: https://arxiv.org/abs/2303.04137
|
114 |
+
```
|