Setosm's picture
End of training
3d82009 verified
metadata
library_name: transformers
language:
  - en
license: apache-2.0
base_model: openai/whisper-medium
tags:
  - generated_from_trainer
metrics:
  - wer
  - precision
  - recall
  - f1
model-index:
  - name: ./whisper-medium-ea_5hr_v2
    results: []

./whisper-medium-ea_5hr_v2

This model is a fine-tuned version of openai/whisper-medium on the Afrispeech-200 dataset. It achieves the following results on the evaluation set:

  • Loss: 0.4999
  • Wer Ortho: 0.2185
  • Wer: 0.1579
  • Cer: 0.0705
  • Precision: 0.9097
  • Recall: 0.9048
  • F1: 0.9068

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 16
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: constant_with_warmup
  • lr_scheduler_warmup_steps: 50
  • training_steps: 500
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer Ortho Wer Cer Precision Recall F1
0.5036 0.1179 50 0.6665 0.2366 0.1752 0.0784 0.9011 0.8964 0.8982
0.5931 0.2358 100 0.5603 0.2211 0.1622 0.0689 0.9073 0.9022 0.9043
0.5468 0.3538 150 0.5329 0.2344 0.1807 0.0911 0.9033 0.8938 0.8974
0.5159 0.4717 200 0.5213 0.2247 0.1675 0.0814 0.9084 0.9044 0.9058
0.4744 0.5896 250 0.5160 0.2332 0.1703 0.0805 0.9064 0.8987 0.9016
0.4753 0.7075 300 0.5132 0.2116 0.1536 0.0661 0.9097 0.9061 0.9074
0.5142 0.8255 350 0.4989 0.2272 0.1646 0.0755 0.9063 0.9023 0.9036
0.4951 0.9434 400 0.4928 0.2152 0.1618 0.0713 0.9098 0.9062 0.9073
0.2467 1.0613 450 0.4990 0.2084 0.1510 0.0648 0.9155 0.9106 0.9126
0.211 1.1792 500 0.4999 0.2185 0.1579 0.0705 0.9097 0.9048 0.9068

Framework versions

  • Transformers 4.52.1
  • Pytorch 2.6.0+cu124
  • Datasets 3.6.0
  • Tokenizers 0.21.1