This classifier tells whether a German text is a political text or not. It is based on the model EuroBERT/EuroBERT-210m and trained on the dataset SinclairSchneider/trainset_political_text_yes_no_german. The train script can be found under this link The model achieved an F1 score of 0.99 on the testset. Contrary to SinclairSchneider/german_politic_DeBERTa-v2-base this model is capable to cover a 8k context length.
from transformers import pipeline, AutoModelForSequenceClassification, AutoTokenizer
model_name = "SinclairSchneider/german_politic_EuroBERT-210m"
model = AutoModelForSequenceClassification.from_pretrained(model_name, trust_remote_code=True)
tokenizer = AutoTokenizer.from_pretrained(model_name, do_lower_case=False, TOKENIZERS_PARALLELISM=True, trust_remote_code=True)
political_classifier = pipeline("text-classification", model=model, tokenizer=tokenizer, trust_remote_code=True)
political_classifier("Trump und Putin einigen sich auf begrenzte Waffenruhe")
[{'label': 'politic', 'score': 0.9991077780723572}]
political_classifier("Franck Ribéry und Arjen Robben feiern beim \"Beckenbauer Cup\" ihr Comeback beim FC Bayern. Sie präsentieren sich wie zu besten Zeiten und wecken eine große Sehnsucht beim Rekordmeister.")
[{'label': 'other', 'score': 0.9865761995315552}]
Model Card for Model ID
Model Details
Model Description
This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
- Developed by: [More Information Needed]
- Funded by [optional]: [More Information Needed]
- Shared by [optional]: [More Information Needed]
- Model type: [More Information Needed]
- Language(s) (NLP): [More Information Needed]
- License: [More Information Needed]
- Finetuned from model [optional]: [More Information Needed]
Model Sources [optional]
- Repository: [More Information Needed]
- Paper [optional]: [More Information Needed]
- Demo [optional]: [More Information Needed]
Uses
Direct Use
[More Information Needed]
Downstream Use [optional]
[More Information Needed]
Out-of-Scope Use
[More Information Needed]
Bias, Risks, and Limitations
[More Information Needed]
Recommendations
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
Training Details
Training Data
[More Information Needed]
Training Procedure
Preprocessing [optional]
[More Information Needed]
Training Hyperparameters
- Training regime: [More Information Needed]
Speeds, Sizes, Times [optional]
[More Information Needed]
Evaluation
Testing Data, Factors & Metrics
Testing Data
[More Information Needed]
Factors
[More Information Needed]
Metrics
[More Information Needed]
Results
[More Information Needed]
Summary
Model Examination [optional]
[More Information Needed]
Environmental Impact
Carbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).
- Hardware Type: [More Information Needed]
- Hours used: [More Information Needed]
- Cloud Provider: [More Information Needed]
- Compute Region: [More Information Needed]
- Carbon Emitted: [More Information Needed]
Technical Specifications [optional]
Model Architecture and Objective
[More Information Needed]
Compute Infrastructure
[More Information Needed]
Hardware
[More Information Needed]
Software
[More Information Needed]
Citation [optional]
BibTeX:
[More Information Needed]
APA:
[More Information Needed]
Glossary [optional]
[More Information Needed]
More Information [optional]
[More Information Needed]
Model Card Authors [optional]
[More Information Needed]
Model Card Contact
[More Information Needed]
- Downloads last month
- 301
Model tree for SinclairSchneider/german_politic_EuroBERT-210m
Base model
EuroBERT/EuroBERT-210m