metadata
language:
- en
license: apache-2.0
tags:
- sentence-transformers
- sentence-similarity
- feature-extraction
- generated_from_trainer
- dataset_size:73
- loss:MatryoshkaLoss
- loss:MultipleNegativesRankingLoss
base_model: thenlper/gte-base
widget:
- source_sentence: >-
What is the maximum value of equipment that can be purchased with a CUE
Student Research Project Grant?
sentences:
- Equipment costs (valued up to $1000).
- >-
Variable awards to recognize and reward academic achievement at the
senior high school level and to encourage students to pursue post
-secondary studies.
- >-
The Amazon Future Engineer Scholarship provides students with an
opportunity to upgrade their careers with a $7,500 CAD/year scholarship
available for up to four years.
- source_sentence: >-
What is the minimum distance a recipient's hometown must be from Concordia
University of Edmonton to be eligible for the Alberta Blue Cross Away from
Home Scholarship?
sentences:
- Three awards are available
- >-
The recipient’s hometown must be at least 100 kilometres from Concordia
University of Edmonton.
- 'Application Deadline: September 1'
- source_sentence: >-
According to the selection criteria, what level of subjects are used to
determine the academic standing of a potential Alberta Blue Cross Away
from Home Scholarship recipient?
sentences:
- >-
Selection is ba sed on the academic standing of 30 -level subjects used
for admission.
- >-
These eligible and ineligible lists are not exhaustive. Doubts about the
eligibility of expenses should be directed to the ORI’s Research
Administration Service s (RAS): [email protected] .
- '*Value: $11000 Master’s; $14,000 Doctoral'
- source_sentence: >-
According to the text, how many days does a grant recipient have to submit
a final report after the grant ends?
sentences:
- >-
All Fall grant recipients are expected to submit an abstract to present
an oral and/or poster presentation of their work, either in its
progression or final stage.
- >-
a business program offered by an Alberta college, polytechnic, or
university that offers the prerequisite courses required for entrance
into the CPA Professional Education Program (CPA PEP).
- >-
The applicant is required to complete and submit a final report within 5
days of the end of the grant.
- source_sentence: >-
In what format should applicants acknowledge the funding provided by
Concordia University of Edmonton for their Student Project Grant?
sentences:
- >-
All oral or poster presentations, publications, including public
messages, arising from research supported by CUE grants must acknowledge
the support of the institution. Acknowledgement can be in the written
format, such as " This research is funded by the generous support of
Concordia University of Edmonton through their CUE Student Research
Project Grants program ", or similar phrasing.
- >-
This $1,000 scholarship is awarded to post -secondary students who have
completed at least one year towards their Bachelor of Science with a
focus on Computer Science, achieved an average GPA of 3.5 or higher, and
are still enrolled in post -secondary studie s.
- >-
The recipient will be selected based on the highest grade in MARK320. In
the event of a tie, preference will be given to the student with the
highest cumulative GPA.
pipeline_tag: sentence-similarity
library_name: sentence-transformers
metrics:
- cosine_accuracy@1
- cosine_accuracy@3
- cosine_accuracy@5
- cosine_accuracy@10
- cosine_precision@1
- cosine_precision@3
- cosine_precision@5
- cosine_precision@10
- cosine_recall@1
- cosine_recall@3
- cosine_recall@5
- cosine_recall@10
- cosine_ndcg@10
- cosine_mrr@10
- cosine_map@100
model-index:
- name: BGE base Financial Matryoshka
results:
- task:
type: information-retrieval
name: Information Retrieval
dataset:
name: dim 768
type: dim_768
metrics:
- type: cosine_accuracy@1
value: 0.5555555555555556
name: Cosine Accuracy@1
- type: cosine_accuracy@3
value: 1
name: Cosine Accuracy@3
- type: cosine_accuracy@5
value: 1
name: Cosine Accuracy@5
- type: cosine_accuracy@10
value: 1
name: Cosine Accuracy@10
- type: cosine_precision@1
value: 0.5555555555555556
name: Cosine Precision@1
- type: cosine_precision@3
value: 0.3333333333333333
name: Cosine Precision@3
- type: cosine_precision@5
value: 0.2
name: Cosine Precision@5
- type: cosine_precision@10
value: 0.1
name: Cosine Precision@10
- type: cosine_recall@1
value: 0.5555555555555556
name: Cosine Recall@1
- type: cosine_recall@3
value: 1
name: Cosine Recall@3
- type: cosine_recall@5
value: 1
name: Cosine Recall@5
- type: cosine_recall@10
value: 1
name: Cosine Recall@10
- type: cosine_ndcg@10
value: 0.8214210289682637
name: Cosine Ndcg@10
- type: cosine_mrr@10
value: 0.7592592592592592
name: Cosine Mrr@10
- type: cosine_map@100
value: 0.7592592592592592
name: Cosine Map@100
- task:
type: information-retrieval
name: Information Retrieval
dataset:
name: dim 512
type: dim_512
metrics:
- type: cosine_accuracy@1
value: 0.4444444444444444
name: Cosine Accuracy@1
- type: cosine_accuracy@3
value: 0.8888888888888888
name: Cosine Accuracy@3
- type: cosine_accuracy@5
value: 1
name: Cosine Accuracy@5
- type: cosine_accuracy@10
value: 1
name: Cosine Accuracy@10
- type: cosine_precision@1
value: 0.4444444444444444
name: Cosine Precision@1
- type: cosine_precision@3
value: 0.2962962962962963
name: Cosine Precision@3
- type: cosine_precision@5
value: 0.2
name: Cosine Precision@5
- type: cosine_precision@10
value: 0.1
name: Cosine Precision@10
- type: cosine_recall@1
value: 0.4444444444444444
name: Cosine Recall@1
- type: cosine_recall@3
value: 0.8888888888888888
name: Cosine Recall@3
- type: cosine_recall@5
value: 1
name: Cosine Recall@5
- type: cosine_recall@10
value: 1
name: Cosine Recall@10
- type: cosine_ndcg@10
value: 0.7678413135022636
name: Cosine Ndcg@10
- type: cosine_mrr@10
value: 0.6888888888888889
name: Cosine Mrr@10
- type: cosine_map@100
value: 0.6888888888888889
name: Cosine Map@100
- task:
type: information-retrieval
name: Information Retrieval
dataset:
name: dim 256
type: dim_256
metrics:
- type: cosine_accuracy@1
value: 0.4444444444444444
name: Cosine Accuracy@1
- type: cosine_accuracy@3
value: 1
name: Cosine Accuracy@3
- type: cosine_accuracy@5
value: 1
name: Cosine Accuracy@5
- type: cosine_accuracy@10
value: 1
name: Cosine Accuracy@10
- type: cosine_precision@1
value: 0.4444444444444444
name: Cosine Precision@1
- type: cosine_precision@3
value: 0.3333333333333333
name: Cosine Precision@3
- type: cosine_precision@5
value: 0.2
name: Cosine Precision@5
- type: cosine_precision@10
value: 0.1
name: Cosine Precision@10
- type: cosine_recall@1
value: 0.4444444444444444
name: Cosine Recall@1
- type: cosine_recall@3
value: 1
name: Cosine Recall@3
- type: cosine_recall@5
value: 1
name: Cosine Recall@5
- type: cosine_recall@10
value: 1
name: Cosine Recall@10
- type: cosine_ndcg@10
value: 0.7658654734127082
name: Cosine Ndcg@10
- type: cosine_mrr@10
value: 0.6851851851851851
name: Cosine Mrr@10
- type: cosine_map@100
value: 0.6851851851851851
name: Cosine Map@100
- task:
type: information-retrieval
name: Information Retrieval
dataset:
name: dim 128
type: dim_128
metrics:
- type: cosine_accuracy@1
value: 0.4444444444444444
name: Cosine Accuracy@1
- type: cosine_accuracy@3
value: 0.8888888888888888
name: Cosine Accuracy@3
- type: cosine_accuracy@5
value: 0.8888888888888888
name: Cosine Accuracy@5
- type: cosine_accuracy@10
value: 0.8888888888888888
name: Cosine Accuracy@10
- type: cosine_precision@1
value: 0.4444444444444444
name: Cosine Precision@1
- type: cosine_precision@3
value: 0.2962962962962963
name: Cosine Precision@3
- type: cosine_precision@5
value: 0.17777777777777778
name: Cosine Precision@5
- type: cosine_precision@10
value: 0.08888888888888889
name: Cosine Precision@10
- type: cosine_recall@1
value: 0.4444444444444444
name: Cosine Recall@1
- type: cosine_recall@3
value: 0.8888888888888888
name: Cosine Recall@3
- type: cosine_recall@5
value: 0.8888888888888888
name: Cosine Recall@5
- type: cosine_recall@10
value: 0.8888888888888888
name: Cosine Recall@10
- type: cosine_ndcg@10
value: 0.7103099178571526
name: Cosine Ndcg@10
- type: cosine_mrr@10
value: 0.6481481481481483
name: Cosine Mrr@10
- type: cosine_map@100
value: 0.6521164021164021
name: Cosine Map@100
- task:
type: information-retrieval
name: Information Retrieval
dataset:
name: dim 64
type: dim_64
metrics:
- type: cosine_accuracy@1
value: 0.6666666666666666
name: Cosine Accuracy@1
- type: cosine_accuracy@3
value: 0.6666666666666666
name: Cosine Accuracy@3
- type: cosine_accuracy@5
value: 0.7777777777777778
name: Cosine Accuracy@5
- type: cosine_accuracy@10
value: 0.8888888888888888
name: Cosine Accuracy@10
- type: cosine_precision@1
value: 0.6666666666666666
name: Cosine Precision@1
- type: cosine_precision@3
value: 0.2222222222222222
name: Cosine Precision@3
- type: cosine_precision@5
value: 0.15555555555555556
name: Cosine Precision@5
- type: cosine_precision@10
value: 0.08888888888888889
name: Cosine Precision@10
- type: cosine_recall@1
value: 0.6666666666666666
name: Cosine Recall@1
- type: cosine_recall@3
value: 0.6666666666666666
name: Cosine Recall@3
- type: cosine_recall@5
value: 0.7777777777777778
name: Cosine Recall@5
- type: cosine_recall@10
value: 0.8888888888888888
name: Cosine Recall@10
- type: cosine_ndcg@10
value: 0.7515566546007473
name: Cosine Ndcg@10
- type: cosine_mrr@10
value: 0.7103174603174602
name: Cosine Mrr@10
- type: cosine_map@100
value: 0.71494708994709
name: Cosine Map@100
BGE base Financial Matryoshka
This is a sentence-transformers model finetuned from thenlper/gte-base on the json dataset. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
Model Details
Model Description
- Model Type: Sentence Transformer
- Base model: thenlper/gte-base
- Maximum Sequence Length: 512 tokens
- Output Dimensionality: 768 dimensions
- Similarity Function: Cosine Similarity
- Training Dataset:
- Language: en
- License: apache-2.0
Model Sources
Full Model Architecture
SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): Normalize()
)
Usage
Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
model = SentenceTransformer("TatvaRA/gte-base-finetuned-schorlaships-matryonshka")
sentences = [
'In what format should applicants acknowledge the funding provided by Concordia University of Edmonton for their Student Project Grant?',
'All oral or poster presentations, publications, including public messages, arising from research supported by CUE grants must acknowledge the support of the institution. Acknowledgement can be in the written format, such as " This research is funded by the generous support of Concordia University of Edmonton through their CUE Student Research Project Grants program ", or similar phrasing.',
'The recipient will be selected based on the highest grade in MARK320. In the event of a tie, preference will be given to the student with the highest cumulative GPA.',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
Evaluation
Metrics
Information Retrieval
Metric |
Value |
cosine_accuracy@1 |
0.5556 |
cosine_accuracy@3 |
1.0 |
cosine_accuracy@5 |
1.0 |
cosine_accuracy@10 |
1.0 |
cosine_precision@1 |
0.5556 |
cosine_precision@3 |
0.3333 |
cosine_precision@5 |
0.2 |
cosine_precision@10 |
0.1 |
cosine_recall@1 |
0.5556 |
cosine_recall@3 |
1.0 |
cosine_recall@5 |
1.0 |
cosine_recall@10 |
1.0 |
cosine_ndcg@10 |
0.8214 |
cosine_mrr@10 |
0.7593 |
cosine_map@100 |
0.7593 |
Information Retrieval
Metric |
Value |
cosine_accuracy@1 |
0.4444 |
cosine_accuracy@3 |
0.8889 |
cosine_accuracy@5 |
1.0 |
cosine_accuracy@10 |
1.0 |
cosine_precision@1 |
0.4444 |
cosine_precision@3 |
0.2963 |
cosine_precision@5 |
0.2 |
cosine_precision@10 |
0.1 |
cosine_recall@1 |
0.4444 |
cosine_recall@3 |
0.8889 |
cosine_recall@5 |
1.0 |
cosine_recall@10 |
1.0 |
cosine_ndcg@10 |
0.7678 |
cosine_mrr@10 |
0.6889 |
cosine_map@100 |
0.6889 |
Information Retrieval
Metric |
Value |
cosine_accuracy@1 |
0.4444 |
cosine_accuracy@3 |
1.0 |
cosine_accuracy@5 |
1.0 |
cosine_accuracy@10 |
1.0 |
cosine_precision@1 |
0.4444 |
cosine_precision@3 |
0.3333 |
cosine_precision@5 |
0.2 |
cosine_precision@10 |
0.1 |
cosine_recall@1 |
0.4444 |
cosine_recall@3 |
1.0 |
cosine_recall@5 |
1.0 |
cosine_recall@10 |
1.0 |
cosine_ndcg@10 |
0.7659 |
cosine_mrr@10 |
0.6852 |
cosine_map@100 |
0.6852 |
Information Retrieval
Metric |
Value |
cosine_accuracy@1 |
0.4444 |
cosine_accuracy@3 |
0.8889 |
cosine_accuracy@5 |
0.8889 |
cosine_accuracy@10 |
0.8889 |
cosine_precision@1 |
0.4444 |
cosine_precision@3 |
0.2963 |
cosine_precision@5 |
0.1778 |
cosine_precision@10 |
0.0889 |
cosine_recall@1 |
0.4444 |
cosine_recall@3 |
0.8889 |
cosine_recall@5 |
0.8889 |
cosine_recall@10 |
0.8889 |
cosine_ndcg@10 |
0.7103 |
cosine_mrr@10 |
0.6481 |
cosine_map@100 |
0.6521 |
Information Retrieval
Metric |
Value |
cosine_accuracy@1 |
0.6667 |
cosine_accuracy@3 |
0.6667 |
cosine_accuracy@5 |
0.7778 |
cosine_accuracy@10 |
0.8889 |
cosine_precision@1 |
0.6667 |
cosine_precision@3 |
0.2222 |
cosine_precision@5 |
0.1556 |
cosine_precision@10 |
0.0889 |
cosine_recall@1 |
0.6667 |
cosine_recall@3 |
0.6667 |
cosine_recall@5 |
0.7778 |
cosine_recall@10 |
0.8889 |
cosine_ndcg@10 |
0.7516 |
cosine_mrr@10 |
0.7103 |
cosine_map@100 |
0.7149 |
Training Details
Training Dataset
json
- Dataset: json
- Size: 73 training samples
- Columns:
anchor
and positive
- Approximate statistics based on the first 73 samples:
|
anchor |
positive |
type |
string |
string |
details |
- min: 14 tokens
- mean: 23.0 tokens
- max: 41 tokens
|
- min: 6 tokens
- mean: 32.74 tokens
- max: 346 tokens
|
- Samples:
anchor |
positive |
What specific type of students are the Alberta Innovates Graduate Student Scholarships designed to support? |
The Alberta Innovates Graduate Student Scholarships support academically superior graduate students who are receiving training and conducting research in areas that are strategically important to Alberta’s economy. |
What is the specific date by which students must submit their reports for the Spring 2025 grant period? |
Report due date April 20th (5 days post grant closure) |
In what format should applicants acknowledge the funding provided by Concordia University of Edmonton for their Student Project Grant? |
All oral or poster presentations, publications, including public messages, arising from research supported by CUE grants must acknowledge the support of the institution. Acknowledgement can be in the written format, such as " This research is funded by the generous support of Concordia University of Edmonton through their CUE Student Research Project Grants program ", or similar phrasing. |
- Loss:
MatryoshkaLoss
with these parameters:{
"loss": "MultipleNegativesRankingLoss",
"matryoshka_dims": [
768,
512,
256,
128,
64
],
"matryoshka_weights": [
1,
1,
1,
1,
1
],
"n_dims_per_step": -1
}
Training Hyperparameters
Non-Default Hyperparameters
eval_strategy
: epoch
per_device_train_batch_size
: 32
per_device_eval_batch_size
: 16
gradient_accumulation_steps
: 16
learning_rate
: 2e-05
num_train_epochs
: 4
lr_scheduler_type
: cosine
warmup_ratio
: 0.1
fp16
: True
load_best_model_at_end
: True
optim
: adamw_torch_fused
batch_sampler
: no_duplicates
All Hyperparameters
Click to expand
overwrite_output_dir
: False
do_predict
: False
eval_strategy
: epoch
prediction_loss_only
: True
per_device_train_batch_size
: 32
per_device_eval_batch_size
: 16
per_gpu_train_batch_size
: None
per_gpu_eval_batch_size
: None
gradient_accumulation_steps
: 16
eval_accumulation_steps
: None
learning_rate
: 2e-05
weight_decay
: 0.0
adam_beta1
: 0.9
adam_beta2
: 0.999
adam_epsilon
: 1e-08
max_grad_norm
: 1.0
num_train_epochs
: 4
max_steps
: -1
lr_scheduler_type
: cosine
lr_scheduler_kwargs
: {}
warmup_ratio
: 0.1
warmup_steps
: 0
log_level
: passive
log_level_replica
: warning
log_on_each_node
: True
logging_nan_inf_filter
: True
save_safetensors
: True
save_on_each_node
: False
save_only_model
: False
restore_callback_states_from_checkpoint
: False
no_cuda
: False
use_cpu
: False
use_mps_device
: False
seed
: 42
data_seed
: None
jit_mode_eval
: False
use_ipex
: False
bf16
: False
fp16
: True
fp16_opt_level
: O1
half_precision_backend
: auto
bf16_full_eval
: False
fp16_full_eval
: False
tf32
: None
local_rank
: 0
ddp_backend
: None
tpu_num_cores
: None
tpu_metrics_debug
: False
debug
: []
dataloader_drop_last
: False
dataloader_num_workers
: 0
dataloader_prefetch_factor
: None
past_index
: -1
disable_tqdm
: False
remove_unused_columns
: True
label_names
: None
load_best_model_at_end
: True
ignore_data_skip
: False
fsdp
: []
fsdp_min_num_params
: 0
fsdp_config
: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
fsdp_transformer_layer_cls_to_wrap
: None
accelerator_config
: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
deepspeed
: None
label_smoothing_factor
: 0.0
optim
: adamw_torch_fused
optim_args
: None
adafactor
: False
group_by_length
: False
length_column_name
: length
ddp_find_unused_parameters
: None
ddp_bucket_cap_mb
: None
ddp_broadcast_buffers
: False
dataloader_pin_memory
: True
dataloader_persistent_workers
: False
skip_memory_metrics
: True
use_legacy_prediction_loop
: False
push_to_hub
: False
resume_from_checkpoint
: None
hub_model_id
: None
hub_strategy
: every_save
hub_private_repo
: False
hub_always_push
: False
gradient_checkpointing
: False
gradient_checkpointing_kwargs
: None
include_inputs_for_metrics
: False
eval_do_concat_batches
: True
fp16_backend
: auto
push_to_hub_model_id
: None
push_to_hub_organization
: None
mp_parameters
:
auto_find_batch_size
: False
full_determinism
: False
torchdynamo
: None
ray_scope
: last
ddp_timeout
: 1800
torch_compile
: False
torch_compile_backend
: None
torch_compile_mode
: None
dispatch_batches
: None
split_batches
: None
include_tokens_per_second
: False
include_num_input_tokens_seen
: False
neftune_noise_alpha
: None
optim_target_modules
: None
batch_eval_metrics
: False
prompts
: None
batch_sampler
: no_duplicates
multi_dataset_batch_sampler
: proportional
Training Logs
Epoch |
Step |
dim_768_cosine_ndcg@10 |
dim_512_cosine_ndcg@10 |
dim_256_cosine_ndcg@10 |
dim_128_cosine_ndcg@10 |
dim_64_cosine_ndcg@10 |
1.0 |
1 |
0.7249 |
0.7249 |
0.7473 |
0.7026 |
0.6686 |
2.0 |
2 |
0.7619 |
0.7249 |
0.7533 |
0.7026 |
0.7480 |
3.0 |
3 |
0.7804 |
0.7619 |
0.7659 |
0.7103 |
0.7496 |
4.0 |
4 |
0.8214 |
0.7678 |
0.7659 |
0.7103 |
0.7516 |
- The bold row denotes the saved checkpoint.
Framework Versions
- Python: 3.11.12
- Sentence Transformers: 4.1.0
- Transformers: 4.41.2
- PyTorch: 2.1.2+cu121
- Accelerate: 1.5.2
- Datasets: 2.19.1
- Tokenizers: 0.19.1
Citation
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
MatryoshkaLoss
@misc{kusupati2024matryoshka,
title={Matryoshka Representation Learning},
author={Aditya Kusupati and Gantavya Bhatt and Aniket Rege and Matthew Wallingford and Aditya Sinha and Vivek Ramanujan and William Howard-Snyder and Kaifeng Chen and Sham Kakade and Prateek Jain and Ali Farhadi},
year={2024},
eprint={2205.13147},
archivePrefix={arXiv},
primaryClass={cs.LG}
}
MultipleNegativesRankingLoss
@misc{henderson2017efficient,
title={Efficient Natural Language Response Suggestion for Smart Reply},
author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
year={2017},
eprint={1705.00652},
archivePrefix={arXiv},
primaryClass={cs.CL}
}