|
--- |
|
license: mit |
|
base_model: pdelobelle/robbert-v2-dutch-base |
|
tags: |
|
- generated_from_trainer |
|
metrics: |
|
- recall |
|
- accuracy |
|
model-index: |
|
- name: robbert0410_lrate10b32 |
|
results: [] |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# robbert0410_lrate10b32 |
|
|
|
This model is a fine-tuned version of [pdelobelle/robbert-v2-dutch-base](https://huggingface.co/pdelobelle/robbert-v2-dutch-base) on an unknown dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.4435 |
|
- Precisions: 0.8143 |
|
- Recall: 0.8300 |
|
- F-measure: 0.8201 |
|
- Accuracy: 0.9162 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 0.0001 |
|
- train_batch_size: 32 |
|
- eval_batch_size: 32 |
|
- seed: 42 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- num_epochs: 8 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Precisions | Recall | F-measure | Accuracy | |
|
|:-------------:|:-----:|:----:|:---------------:|:----------:|:------:|:---------:|:--------:| |
|
| 0.6187 | 1.0 | 118 | 0.3807 | 0.8761 | 0.6803 | 0.6943 | 0.8771 | |
|
| 0.3045 | 2.0 | 236 | 0.3297 | 0.7915 | 0.7331 | 0.7475 | 0.8966 | |
|
| 0.1748 | 3.0 | 354 | 0.3503 | 0.7831 | 0.7466 | 0.7553 | 0.9005 | |
|
| 0.1059 | 4.0 | 472 | 0.3670 | 0.8133 | 0.7784 | 0.7893 | 0.9086 | |
|
| 0.0649 | 5.0 | 590 | 0.3926 | 0.7875 | 0.7973 | 0.7908 | 0.9053 | |
|
| 0.0376 | 6.0 | 708 | 0.4213 | 0.7906 | 0.7922 | 0.7906 | 0.9082 | |
|
| 0.0221 | 7.0 | 826 | 0.4435 | 0.8143 | 0.8300 | 0.8201 | 0.9162 | |
|
| 0.014 | 8.0 | 944 | 0.4521 | 0.8170 | 0.8047 | 0.8090 | 0.9142 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.34.0 |
|
- Pytorch 2.0.1+cu118 |
|
- Datasets 2.14.5 |
|
- Tokenizers 0.14.0 |
|
|