metadata
			datasets: Vertax/bi_arx5_pick_and_place_cube
library_name: lerobot
license: apache-2.0
model_name: diffusion
pipeline_tag: robotics
tags:
  - lerobot
  - diffusion
  - robotics
Model Card for diffusion
Diffusion Policy treats visuomotor control as a generative diffusion process, producing smooth, multi-step action trajectories that excel at contact-rich manipulation.
This policy has been trained and pushed to the Hub using LeRobot. See the full documentation at LeRobot Docs.
How to Get Started with the Model
For a complete walkthrough, see the training guide. Below is the short version on how to train and run inference/eval:
Train from scratch
lerobot-train \
  --dataset.repo_id=${HF_USER}/<dataset> \
  --policy.type=act \
  --output_dir=outputs/train/<desired_policy_repo_id> \
  --job_name=lerobot_training \
  --policy.device=cuda \
  --policy.repo_id=${HF_USER}/<desired_policy_repo_id>
  --wandb.enable=true
Writes checkpoints to outputs/train/<desired_policy_repo_id>/checkpoints/.
Evaluate the policy/run inference
lerobot-record \
  --robot.type=so100_follower \
  --dataset.repo_id=<hf_user>/eval_<dataset> \
  --policy.path=<hf_user>/<desired_policy_repo_id> \
  --episodes=10
Prefix the dataset repo with eval_ and supply --policy.path pointing to a local or hub checkpoint.
Model Details
- License: apache-2.0