dit-base-finetuned-rvlcdip-finetuned-mobile-eye-tracking-dataset-v2

This model is a fine-tuned version of microsoft/dit-base-finetuned-rvlcdip on the imagefolder dataset. It achieves the following results on the evaluation set:

  • Loss: 0.4029
  • Accuracy: 0.8333

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 128
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 30

Training results

Training Loss Epoch Step Validation Loss Accuracy
No log 0.86 3 0.6939 0.4792
No log 2.0 7 0.6927 0.5417
0.6938 2.86 10 0.6986 0.4167
0.6938 4.0 14 0.6959 0.4583
0.6938 4.86 17 0.6798 0.6875
0.684 6.0 21 0.6890 0.5208
0.684 6.86 24 0.6768 0.5833
0.684 8.0 28 0.6637 0.6667
0.6772 8.86 31 0.7099 0.5
0.6772 10.0 35 0.6467 0.6042
0.6772 10.86 38 0.6059 0.6875
0.6283 12.0 42 0.5860 0.7292
0.6283 12.86 45 0.5670 0.7708
0.6283 14.0 49 0.5677 0.6875
0.5712 14.86 52 0.5453 0.6875
0.5712 16.0 56 0.4991 0.7708
0.5712 16.86 59 0.4830 0.75
0.5485 18.0 63 0.4485 0.7917
0.5485 18.86 66 0.4268 0.8542
0.506 20.0 70 0.4588 0.7708
0.506 20.86 73 0.4412 0.75
0.506 22.0 77 0.4099 0.8333
0.4636 22.86 80 0.4005 0.875
0.4636 24.0 84 0.4039 0.8333
0.4636 24.86 87 0.4040 0.8333
0.4453 25.71 90 0.4029 0.8333

Framework versions

  • Transformers 4.33.0
  • Pytorch 2.6.0+cu124
  • Datasets 3.5.0
  • Tokenizers 0.13.3
Downloads last month
5
Inference Providers NEW
This model isn't deployed by any Inference Provider. ๐Ÿ™‹ Ask for provider support

Model tree for VinishKrishna05/dit-base-finetuned-rvlcdip-finetuned-mobile-eye-tracking-dataset-v2

Finetuned
(9)
this model

Evaluation results