VinishKrishna05's picture
Model save
392858d verified
metadata
base_model: microsoft/dit-base-finetuned-rvlcdip
tags:
  - generated_from_trainer
datasets:
  - imagefolder
metrics:
  - accuracy
model-index:
  - name: dit-base-finetuned-rvlcdip-finetuned-mobile-eye-tracking-dataset-v2
    results:
      - task:
          name: Image Classification
          type: image-classification
        dataset:
          name: imagefolder
          type: imagefolder
          config: default
          split: train
          args: default
        metrics:
          - name: Accuracy
            type: accuracy
            value: 0.8333333333333334

dit-base-finetuned-rvlcdip-finetuned-mobile-eye-tracking-dataset-v2

This model is a fine-tuned version of microsoft/dit-base-finetuned-rvlcdip on the imagefolder dataset. It achieves the following results on the evaluation set:

  • Loss: 0.4029
  • Accuracy: 0.8333

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 128
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 30

Training results

Training Loss Epoch Step Validation Loss Accuracy
No log 0.86 3 0.6939 0.4792
No log 2.0 7 0.6927 0.5417
0.6938 2.86 10 0.6986 0.4167
0.6938 4.0 14 0.6959 0.4583
0.6938 4.86 17 0.6798 0.6875
0.684 6.0 21 0.6890 0.5208
0.684 6.86 24 0.6768 0.5833
0.684 8.0 28 0.6637 0.6667
0.6772 8.86 31 0.7099 0.5
0.6772 10.0 35 0.6467 0.6042
0.6772 10.86 38 0.6059 0.6875
0.6283 12.0 42 0.5860 0.7292
0.6283 12.86 45 0.5670 0.7708
0.6283 14.0 49 0.5677 0.6875
0.5712 14.86 52 0.5453 0.6875
0.5712 16.0 56 0.4991 0.7708
0.5712 16.86 59 0.4830 0.75
0.5485 18.0 63 0.4485 0.7917
0.5485 18.86 66 0.4268 0.8542
0.506 20.0 70 0.4588 0.7708
0.506 20.86 73 0.4412 0.75
0.506 22.0 77 0.4099 0.8333
0.4636 22.86 80 0.4005 0.875
0.4636 24.0 84 0.4039 0.8333
0.4636 24.86 87 0.4040 0.8333
0.4453 25.71 90 0.4029 0.8333

Framework versions

  • Transformers 4.33.0
  • Pytorch 2.6.0+cu124
  • Datasets 3.5.0
  • Tokenizers 0.13.3