metadata
base_model: microsoft/dit-base-finetuned-rvlcdip
tags:
- generated_from_trainer
datasets:
- imagefolder
metrics:
- accuracy
model-index:
- name: dit-base-finetuned-rvlcdip-finetuned-mobile-eye-tracking-dataset-v2
results:
- task:
name: Image Classification
type: image-classification
dataset:
name: imagefolder
type: imagefolder
config: default
split: train
args: default
metrics:
- name: Accuracy
type: accuracy
value: 0.8333333333333334
dit-base-finetuned-rvlcdip-finetuned-mobile-eye-tracking-dataset-v2
This model is a fine-tuned version of microsoft/dit-base-finetuned-rvlcdip on the imagefolder dataset. It achieves the following results on the evaluation set:
- Loss: 0.4029
- Accuracy: 0.8333
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 128
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 30
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy |
---|---|---|---|---|
No log | 0.86 | 3 | 0.6939 | 0.4792 |
No log | 2.0 | 7 | 0.6927 | 0.5417 |
0.6938 | 2.86 | 10 | 0.6986 | 0.4167 |
0.6938 | 4.0 | 14 | 0.6959 | 0.4583 |
0.6938 | 4.86 | 17 | 0.6798 | 0.6875 |
0.684 | 6.0 | 21 | 0.6890 | 0.5208 |
0.684 | 6.86 | 24 | 0.6768 | 0.5833 |
0.684 | 8.0 | 28 | 0.6637 | 0.6667 |
0.6772 | 8.86 | 31 | 0.7099 | 0.5 |
0.6772 | 10.0 | 35 | 0.6467 | 0.6042 |
0.6772 | 10.86 | 38 | 0.6059 | 0.6875 |
0.6283 | 12.0 | 42 | 0.5860 | 0.7292 |
0.6283 | 12.86 | 45 | 0.5670 | 0.7708 |
0.6283 | 14.0 | 49 | 0.5677 | 0.6875 |
0.5712 | 14.86 | 52 | 0.5453 | 0.6875 |
0.5712 | 16.0 | 56 | 0.4991 | 0.7708 |
0.5712 | 16.86 | 59 | 0.4830 | 0.75 |
0.5485 | 18.0 | 63 | 0.4485 | 0.7917 |
0.5485 | 18.86 | 66 | 0.4268 | 0.8542 |
0.506 | 20.0 | 70 | 0.4588 | 0.7708 |
0.506 | 20.86 | 73 | 0.4412 | 0.75 |
0.506 | 22.0 | 77 | 0.4099 | 0.8333 |
0.4636 | 22.86 | 80 | 0.4005 | 0.875 |
0.4636 | 24.0 | 84 | 0.4039 | 0.8333 |
0.4636 | 24.86 | 87 | 0.4040 | 0.8333 |
0.4453 | 25.71 | 90 | 0.4029 | 0.8333 |
Framework versions
- Transformers 4.33.0
- Pytorch 2.6.0+cu124
- Datasets 3.5.0
- Tokenizers 0.13.3