W1nd-navigator's picture
Update README.md
447cad6 verified
metadata
license: mit
datasets:
  - mteb/banking77
language:
  - en
pipeline_tag: text-classification
library_name: sentence-transformers
tags:
  - mteb
  - text
  - transformers
  - text-embeddings-inference
  - sparse-encoder
  - sparse
  - csr
model-index:
  - name: CSR
    results:
      - dataset:
          name: MTEB Banking77Classification
          type: mteb/banking77
          config: default
          revision: 0fd18e25b25c072e09e0d92ab615fda904d66300
          split: test
        metrics:
          - type: accuracy
            value: 0.899545
          - type: f1
            value: 0.899018
          - type: f1_weighted
            value: 0.899018
          - type: main_score
            value: 0.899545
        task:
          type: Classification
base_model:
  - nvidia/NV-Embed-v2

For more details, including benchmark evaluation, hardware requirements, and inference performance, please refer to our Github.

Usage

📌 Tip: For NV-Embed-V2, using Transformers versions later than 4.47.0 may lead to performance degradation, as model_type=bidir_mistral in config.json is no longer supported.

We recommend using Transformers 4.47.0.

Sentence Transformers Usage

You can evaluate this model loaded by Sentence Transformers with the following code snippet:

import mteb
from sentence_transformers import SparseEncoder
model = SparseEncoder(
    "Y-Research-Group/CSR-NV_Embed_v2-Classification-Banking77",
    trust_remote_code=True
)
model.prompts = {
    "Banking77Classification": "Instruct: Given a online banking query, find the corresponding intents\nQuery:"
}
task = mteb.get_tasks(tasks=["Banking77Classification"])
evaluation = mteb.MTEB(tasks=task)
evaluation.run(
    model,
    eval_splits=["test"],
    output_folder="./results/Banking77Classification",
    show_progress_bar=True
    encode_kwargs={"convert_to_sparse_tensor": False, "batch_size": 8}
)  # MTEB don't support sparse tensors yet, so we need to convert to dense tensors

Citation

@inproceedings{wenbeyond,
  title={Beyond Matryoshka: Revisiting Sparse Coding for Adaptive Representation},
  author={Wen, Tiansheng and Wang, Yifei and Zeng, Zequn and Peng, Zhong and Su, Yudi and Liu, Xinyang and Chen, Bo and Liu, Hongwei and Jegelka, Stefanie and You, Chenyu},
  booktitle={Forty-second International Conference on Machine Learning}
}