|
--- |
|
license: mit |
|
datasets: |
|
- mteb/banking77 |
|
language: |
|
- en |
|
pipeline_tag: text-classification |
|
library_name: sentence-transformers |
|
tags: |
|
- mteb |
|
- text |
|
- transformers |
|
- text-embeddings-inference |
|
- sparse-encoder |
|
- sparse |
|
- csr |
|
|
|
model-index: |
|
- name: CSR |
|
results: |
|
- dataset: |
|
name: MTEB Banking77Classification |
|
type: mteb/banking77 |
|
config: default |
|
revision: 0fd18e25b25c072e09e0d92ab615fda904d66300 |
|
split: test |
|
metrics: |
|
- type: accuracy |
|
value: 0.899545 |
|
- type: f1 |
|
value: 0.899018 |
|
- type: f1_weighted |
|
value: 0.899018 |
|
- type: main_score |
|
value: 0.899545 |
|
task: |
|
type: Classification |
|
base_model: |
|
- nvidia/NV-Embed-v2 |
|
--- |
|
|
|
|
|
|
|
For more details, including benchmark evaluation, hardware requirements, and inference performance, please refer to our [Github](https://github.com/neilwen987/CSR_Adaptive_Rep). |
|
|
|
|
|
## Usage |
|
๐ **Tip**: For NV-Embed-V2, using Transformers versions **later** than 4.47.0 may lead to performance degradation, as ``model_type=bidir_mistral`` in ``config.json`` is no longer supported. |
|
|
|
We recommend using ``Transformers 4.47.0.`` |
|
|
|
### Sentence Transformers Usage |
|
You can evaluate this model loaded by Sentence Transformers with the following code snippet: |
|
```python |
|
import mteb |
|
from sentence_transformers import SparseEncoder |
|
model = SparseEncoder( |
|
"Y-Research-Group/CSR-NV_Embed_v2-Classification-Banking77", |
|
trust_remote_code=True |
|
) |
|
model.prompts = { |
|
"Banking77Classification": "Instruct: Given a online banking query, find the corresponding intents\nQuery:" |
|
} |
|
task = mteb.get_tasks(tasks=["Banking77Classification"]) |
|
evaluation = mteb.MTEB(tasks=task) |
|
evaluation.run( |
|
model, |
|
eval_splits=["test"], |
|
output_folder="./results/Banking77Classification", |
|
show_progress_bar=True |
|
encode_kwargs={"convert_to_sparse_tensor": False, "batch_size": 8} |
|
) # MTEB don't support sparse tensors yet, so we need to convert to dense tensors |
|
``` |
|
|
|
## Citation |
|
```bibtex |
|
@inproceedings{wenbeyond, |
|
title={Beyond Matryoshka: Revisiting Sparse Coding for Adaptive Representation}, |
|
author={Wen, Tiansheng and Wang, Yifei and Zeng, Zequn and Peng, Zhong and Su, Yudi and Liu, Xinyang and Chen, Bo and Liu, Hongwei and Jegelka, Stefanie and You, Chenyu}, |
|
booktitle={Forty-second International Conference on Machine Learning} |
|
} |
|
``` |