|
import os |
|
import pandas as pd |
|
import torch |
|
import numpy as np |
|
from PIL import Image |
|
from sklearn.metrics import classification_report, confusion_matrix |
|
import matplotlib.pyplot as plt |
|
import seaborn as sns |
|
from torchvision import transforms |
|
from transformers import ( |
|
ViTFeatureExtractor, |
|
ViTForImageClassification, |
|
Trainer, |
|
TrainingArguments, |
|
EarlyStoppingCallback, |
|
default_data_collator |
|
) |
|
from datasets import load_dataset, Dataset, DatasetDict |
|
from huggingface_hub import HfApi |
|
|
|
|
|
MODEL_NAME = "wambugu71/crop_leaf_diseases_vit" |
|
CSV_PATH = "dataset/labels.csv" |
|
IMAGE_DIR = "dataset/images" |
|
OUTPUT_DIR = "./vit_leaf_disease_model" |
|
NUM_EPOCHS = 10 |
|
BATCH_SIZE = 16 |
|
LEARNING_RATE = 2e-5 |
|
SEED = 42 |
|
|
|
|
|
torch.manual_seed(SEED) |
|
np.random.seed(SEED) |
|
|
|
|
|
df = pd.read_csv(CSV_PATH) |
|
labels = sorted(df['label'].unique()) |
|
label2id = {label: i for i, label in enumerate(labels)} |
|
id2label = {i: label for label, i in label2id.items()} |
|
df['label_id'] = df['label'].map(label2id) |
|
|
|
|
|
feature_extractor = ViTFeatureExtractor.from_pretrained(MODEL_NAME) |
|
model = ViTForImageClassification.from_pretrained( |
|
MODEL_NAME, |
|
num_labels=len(labels), |
|
label2id=label2id, |
|
id2label=id2label |
|
) |
|
|
|
|
|
def preprocess(example): |
|
image_path = os.path.join(IMAGE_DIR, example['image']) |
|
image = Image.open(image_path).convert("RGB") |
|
inputs = feature_extractor(images=image, return_tensors="pt") |
|
example['pixel_values'] = inputs['pixel_values'][0] |
|
example['label'] = example['label_id'] |
|
return example |
|
|
|
|
|
dataset = Dataset.from_pandas(df) |
|
dataset = dataset.map(preprocess, remove_columns=['image', 'label', 'label_id']) |
|
dataset = dataset.train_test_split(test_size=0.2, seed=SEED) |
|
train_ds = dataset['train'] |
|
eval_ds = dataset['test'] |
|
|
|
|
|
from evaluate import load |
|
accuracy = load("accuracy") |
|
|
|
def compute_metrics(eval_pred): |
|
logits, labels = eval_pred |
|
predictions = np.argmax(logits, axis=-1) |
|
return accuracy.compute(predictions=predictions, references=labels) |
|
|
|
|
|
training_args = TrainingArguments( |
|
output_dir=OUTPUT_DIR, |
|
per_device_train_batch_size=BATCH_SIZE, |
|
per_device_eval_batch_size=BATCH_SIZE, |
|
num_train_epochs=NUM_EPOCHS, |
|
evaluation_strategy="epoch", |
|
save_strategy="epoch", |
|
learning_rate=LEARNING_RATE, |
|
logging_dir="./logs", |
|
logging_steps=10, |
|
save_total_limit=2, |
|
load_best_model_at_end=True, |
|
metric_for_best_model="accuracy", |
|
greater_is_better=True, |
|
seed=SEED, |
|
report_to="none" |
|
) |
|
|
|
|
|
trainer = Trainer( |
|
model=model, |
|
args=training_args, |
|
train_dataset=train_ds, |
|
eval_dataset=eval_ds, |
|
tokenizer=feature_extractor, |
|
data_collator=default_data_collator, |
|
compute_metrics=compute_metrics, |
|
callbacks=[EarlyStoppingCallback(early_stopping_patience=3)] |
|
) |
|
|
|
|
|
trainer.train() |
|
|
|
|
|
model.save_pretrained(OUTPUT_DIR) |
|
feature_extractor.save_pretrained(OUTPUT_DIR) |
|
|
|
|
|
outputs = trainer.predict(eval_ds) |
|
preds = np.argmax(outputs.predictions, axis=-1) |
|
true_labels = outputs.label_ids |
|
|
|
print("\nClassification Report:\n") |
|
print(classification_report(true_labels, preds, target_names=labels)) |
|
|
|
|
|
cm = confusion_matrix(true_labels, preds) |
|
plt.figure(figsize=(10, 8)) |
|
sns.heatmap(cm, annot=True, fmt='d', cmap='Blues', xticklabels=labels, yticklabels=labels) |
|
plt.xlabel("Predicted") |
|
plt.ylabel("True") |
|
plt.title("Confusion Matrix") |
|
plt.tight_layout() |
|
plt.savefig("confusion_matrix.png") |
|
plt.show() |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|