model / README.md
abdeljalilELmajjodi's picture
xlm_base_continuous_train
b580382 verified
metadata
library_name: transformers
license: mit
base_model: FacebookAI/xlm-roberta-base
tags:
  - generated_from_trainer
model-index:
  - name: model
    results: []

model

This model is a fine-tuned version of FacebookAI/xlm-roberta-base on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 3.2858

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 4
  • eval_batch_size: 16
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 16
  • optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.03
  • num_epochs: 1
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss
3.2251 0.0533 1000 4.1491
2.7413 0.1067 2000 3.7912
2.5416 0.16 3000 3.6801
2.371 0.2133 4000 3.6439
2.2968 0.2667 5000 3.5301
2.1989 0.32 6000 3.3905
2.0841 0.3733 7000 3.5244
2.0032 0.4267 8000 3.3268
1.9618 0.48 9000 3.3207
1.9114 0.5333 10000 3.4544
1.8472 0.5867 11000 3.2520
1.8068 0.64 12000 3.3389
1.7692 0.6933 13000 3.2428
1.7236 0.7467 14000 3.3926
1.7219 0.8 15000 3.2721
1.6838 0.8533 16000 3.2671
1.6771 0.9067 17000 3.2732
1.6531 0.96 18000 3.2858

Framework versions

  • Transformers 4.48.1
  • Pytorch 2.1.1+cu121
  • Datasets 3.2.0
  • Tokenizers 0.21.0