albertus-sussex's picture
Add new SentenceTransformer model
d558697 verified
metadata
tags:
  - sentence-transformers
  - sentence-similarity
  - feature-extraction
  - generated_from_trainer
  - dataset_size:2142
  - loss:TripletLoss
base_model: Alibaba-NLP/gte-base-en-v1.5
widget:
  - source_sentence: Polaroid
    sentences:
      - >-
        Polaroid I1237 Point & Shoot Digital Camera - 12 Megapixel - 2.7"
        Active...
      - Sony
      - manufacturer
      - model
  - source_sentence: ': Olympus'
    sentences:
      - manufacturer
      - >-
        Olympus Fe-47 Point & Shoot Digital Camera - 14 Megapixel - 2.70" Lcd
        -...
      - model
      - Nikon
  - source_sentence: Stylus Tough 6020 Point & Shoot Digital Camera
    sentences:
      - FE-4020 Point & Shoot Digital Camera
      - model
      - price
      - $199.99
  - source_sentence: $249.96
    sentences:
      - manufacturer
      - price
      - Casio
      - $267.24
  - source_sentence: $19.95
    sentences:
      - ': Bell + Howell'
      - $32.33
      - price
      - manufacturer
pipeline_tag: sentence-similarity
library_name: sentence-transformers
metrics:
  - cosine_accuracy
  - silhouette_cosine
  - silhouette_euclidean
model-index:
  - name: SentenceTransformer based on Alibaba-NLP/gte-base-en-v1.5
    results:
      - task:
          type: triplet
          name: Triplet
        dataset:
          name: Unknown
          type: unknown
        metrics:
          - type: cosine_accuracy
            value: 1
            name: Cosine Accuracy
          - type: cosine_accuracy
            value: 1
            name: Cosine Accuracy
      - task:
          type: silhouette
          name: Silhouette
        dataset:
          name: Unknown
          type: unknown
        metrics:
          - type: silhouette_cosine
            value: 0.9872768521308899
            name: Silhouette Cosine
          - type: silhouette_euclidean
            value: 0.8968985080718994
            name: Silhouette Euclidean
          - type: silhouette_cosine
            value: 0.9871986508369446
            name: Silhouette Cosine
          - type: silhouette_euclidean
            value: 0.8965350389480591
            name: Silhouette Euclidean

SentenceTransformer based on Alibaba-NLP/gte-base-en-v1.5

This is a sentence-transformers model finetuned from Alibaba-NLP/gte-base-en-v1.5. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.

Model Details

Model Description

  • Model Type: Sentence Transformer
  • Base model: Alibaba-NLP/gte-base-en-v1.5
  • Maximum Sequence Length: 512 tokens
  • Output Dimensionality: 768 dimensions
  • Similarity Function: Cosine Similarity

Model Sources

Full Model Architecture

SentenceTransformer(
  (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: NewModel 
  (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
)

Usage

Direct Usage (Sentence Transformers)

First install the Sentence Transformers library:

pip install -U sentence-transformers

Then you can load this model and run inference.

from sentence_transformers import SentenceTransformer

# Download from the 🤗 Hub
model = SentenceTransformer("albertus-sussex/veriscrape-sbert-camera-reference_2_to_verify_8-fold-1")
# Run inference
sentences = [
    '$19.95',
    '$32.33',
    ': Bell + Howell',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]

# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]

Evaluation

Metrics

Triplet

Metric Value
cosine_accuracy 1.0

Silhouette

  • Evaluated with veriscrape.training.SilhouetteEvaluator
Metric Value
silhouette_cosine 0.9873
silhouette_euclidean 0.8969

Triplet

Metric Value
cosine_accuracy 1.0

Silhouette

  • Evaluated with veriscrape.training.SilhouetteEvaluator
Metric Value
silhouette_cosine 0.9872
silhouette_euclidean 0.8965

Training Details

Training Dataset

Unnamed Dataset

  • Size: 2,142 training samples
  • Columns: anchor, positive, negative, pos_attr_name, and neg_attr_name
  • Approximate statistics based on the first 1000 samples:
    anchor positive negative pos_attr_name neg_attr_name
    type string string string string string
    details
    • min: 3 tokens
    • mean: 11.2 tokens
    • max: 54 tokens
    • min: 3 tokens
    • mean: 11.62 tokens
    • max: 59 tokens
    • min: 3 tokens
    • mean: 11.39 tokens
    • max: 59 tokens
    • min: 3 tokens
    • mean: 3.0 tokens
    • max: 3 tokens
    • min: 3 tokens
    • mean: 3.0 tokens
    • max: 3 tokens
  • Samples:
    anchor positive negative pos_attr_name neg_attr_name
    $146.95 $333.96 New! SONY Cyber-Shot DSC-HX5V 10.2MP Digital Camera Black-10x optical zoom, 25mm wide angle Sony G Lens, 3.0" LCD Screen!! Including 1 bonus accessoy-New 4GB Memory Stick!! price model
    Sony (alpha) NEX-5 Digital Camera Kit - Silver - with 18-55mm F3.5-5.6 E-mount Lens & Sony 16mm F/2.8 E-mount Lens EasyShare M575 Point & Shoot Digital Camera $799.95 model price
    DC150 Point & Shoot Digital Camera Nikon Coolpix S70 12.1MP Digital Camera w/5x Optical VR Zoom (Champagne/Brown) BigVALUEInc Accessory Saver 8GB EL12 Battery/Charger Bundle $154.16 model price
  • Loss: TripletLoss with these parameters:
    {
        "distance_metric": "TripletDistanceMetric.EUCLIDEAN",
        "triplet_margin": 5
    }
    

Evaluation Dataset

Unnamed Dataset

  • Size: 239 evaluation samples
  • Columns: anchor, positive, negative, pos_attr_name, and neg_attr_name
  • Approximate statistics based on the first 239 samples:
    anchor positive negative pos_attr_name neg_attr_name
    type string string string string string
    details
    • min: 3 tokens
    • mean: 11.73 tokens
    • max: 54 tokens
    • min: 3 tokens
    • mean: 12.13 tokens
    • max: 49 tokens
    • min: 3 tokens
    • mean: 10.64 tokens
    • max: 59 tokens
    • min: 3 tokens
    • mean: 3.0 tokens
    • max: 3 tokens
    • min: 3 tokens
    • mean: 3.0 tokens
    • max: 3 tokens
  • Samples:
    anchor positive negative pos_attr_name neg_attr_name
    : Sony Panasonic $599.00 manufacturer price
    Nikon Coolpix P100 Point & Shoot Digital Camera - 10.3 Megapixel - 3"... Kodak Easyshare M580 Point & Shoot Digital Camera - 14 Megapixel - 3" Color... $299.99 model price
    Canon General Electric Company $179.00 manufacturer price
  • Loss: TripletLoss with these parameters:
    {
        "distance_metric": "TripletDistanceMetric.EUCLIDEAN",
        "triplet_margin": 5
    }
    

Training Hyperparameters

Non-Default Hyperparameters

  • eval_strategy: epoch
  • per_device_train_batch_size: 128
  • per_device_eval_batch_size: 128
  • num_train_epochs: 5
  • warmup_ratio: 0.1

All Hyperparameters

Click to expand
  • overwrite_output_dir: False
  • do_predict: False
  • eval_strategy: epoch
  • prediction_loss_only: True
  • per_device_train_batch_size: 128
  • per_device_eval_batch_size: 128
  • per_gpu_train_batch_size: None
  • per_gpu_eval_batch_size: None
  • gradient_accumulation_steps: 1
  • eval_accumulation_steps: None
  • torch_empty_cache_steps: None
  • learning_rate: 5e-05
  • weight_decay: 0.0
  • adam_beta1: 0.9
  • adam_beta2: 0.999
  • adam_epsilon: 1e-08
  • max_grad_norm: 1.0
  • num_train_epochs: 5
  • max_steps: -1
  • lr_scheduler_type: linear
  • lr_scheduler_kwargs: {}
  • warmup_ratio: 0.1
  • warmup_steps: 0
  • log_level: passive
  • log_level_replica: warning
  • log_on_each_node: True
  • logging_nan_inf_filter: True
  • save_safetensors: True
  • save_on_each_node: False
  • save_only_model: False
  • restore_callback_states_from_checkpoint: False
  • no_cuda: False
  • use_cpu: False
  • use_mps_device: False
  • seed: 42
  • data_seed: None
  • jit_mode_eval: False
  • use_ipex: False
  • bf16: False
  • fp16: False
  • fp16_opt_level: O1
  • half_precision_backend: auto
  • bf16_full_eval: False
  • fp16_full_eval: False
  • tf32: None
  • local_rank: 0
  • ddp_backend: None
  • tpu_num_cores: None
  • tpu_metrics_debug: False
  • debug: []
  • dataloader_drop_last: False
  • dataloader_num_workers: 0
  • dataloader_prefetch_factor: None
  • past_index: -1
  • disable_tqdm: False
  • remove_unused_columns: True
  • label_names: None
  • load_best_model_at_end: False
  • ignore_data_skip: False
  • fsdp: []
  • fsdp_min_num_params: 0
  • fsdp_config: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
  • fsdp_transformer_layer_cls_to_wrap: None
  • accelerator_config: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
  • deepspeed: None
  • label_smoothing_factor: 0.0
  • optim: adamw_torch
  • optim_args: None
  • adafactor: False
  • group_by_length: False
  • length_column_name: length
  • ddp_find_unused_parameters: None
  • ddp_bucket_cap_mb: None
  • ddp_broadcast_buffers: False
  • dataloader_pin_memory: True
  • dataloader_persistent_workers: False
  • skip_memory_metrics: True
  • use_legacy_prediction_loop: False
  • push_to_hub: False
  • resume_from_checkpoint: None
  • hub_model_id: None
  • hub_strategy: every_save
  • hub_private_repo: False
  • hub_always_push: False
  • gradient_checkpointing: False
  • gradient_checkpointing_kwargs: None
  • include_inputs_for_metrics: False
  • eval_do_concat_batches: True
  • fp16_backend: auto
  • push_to_hub_model_id: None
  • push_to_hub_organization: None
  • mp_parameters:
  • auto_find_batch_size: False
  • full_determinism: False
  • torchdynamo: None
  • ray_scope: last
  • ddp_timeout: 1800
  • torch_compile: False
  • torch_compile_backend: None
  • torch_compile_mode: None
  • dispatch_batches: None
  • split_batches: None
  • include_tokens_per_second: False
  • include_num_input_tokens_seen: False
  • neftune_noise_alpha: None
  • optim_target_modules: None
  • batch_eval_metrics: False
  • eval_on_start: False
  • use_liger_kernel: False
  • eval_use_gather_object: False
  • prompts: None
  • batch_sampler: batch_sampler
  • multi_dataset_batch_sampler: proportional

Training Logs

Epoch Step Training Loss Validation Loss cosine_accuracy silhouette_cosine
-1 -1 - - 0.8452 0.3814
1.0 17 0.4662 0.0 1.0 0.9802
2.0 34 0.0 0.0 1.0 0.9866
3.0 51 0.0 0.0 1.0 0.9872
4.0 68 0.0 0.0 1.0 0.9873
5.0 85 0.0 0.0 1.0 0.9873
-1 -1 - - 1.0 0.9872

Framework Versions

  • Python: 3.10.16
  • Sentence Transformers: 4.0.1
  • Transformers: 4.45.2
  • PyTorch: 2.5.1+cu124
  • Accelerate: 1.5.2
  • Datasets: 3.1.0
  • Tokenizers: 0.20.3

Citation

BibTeX

Sentence Transformers

@inproceedings{reimers-2019-sentence-bert,
    title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
    author = "Reimers, Nils and Gurevych, Iryna",
    booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
    month = "11",
    year = "2019",
    publisher = "Association for Computational Linguistics",
    url = "https://arxiv.org/abs/1908.10084",
}

TripletLoss

@misc{hermans2017defense,
    title={In Defense of the Triplet Loss for Person Re-Identification},
    author={Alexander Hermans and Lucas Beyer and Bastian Leibe},
    year={2017},
    eprint={1703.07737},
    archivePrefix={arXiv},
    primaryClass={cs.CV}
}