albertus-sussex's picture
Add new SentenceTransformer model
d558697 verified
---
tags:
- sentence-transformers
- sentence-similarity
- feature-extraction
- generated_from_trainer
- dataset_size:2142
- loss:TripletLoss
base_model: Alibaba-NLP/gte-base-en-v1.5
widget:
- source_sentence: Polaroid
sentences:
- Polaroid I1237 Point & Shoot Digital Camera - 12 Megapixel - 2.7" Active...
- Sony
- manufacturer
- model
- source_sentence: ': Olympus'
sentences:
- manufacturer
- Olympus Fe-47 Point & Shoot Digital Camera - 14 Megapixel - 2.70" Lcd -...
- model
- Nikon
- source_sentence: Stylus Tough 6020 Point & Shoot Digital Camera
sentences:
- FE-4020 Point & Shoot Digital Camera
- model
- price
- $199.99
- source_sentence: $249.96
sentences:
- manufacturer
- price
- Casio
- $267.24
- source_sentence: $19.95
sentences:
- ': Bell + Howell'
- $32.33
- price
- manufacturer
pipeline_tag: sentence-similarity
library_name: sentence-transformers
metrics:
- cosine_accuracy
- silhouette_cosine
- silhouette_euclidean
model-index:
- name: SentenceTransformer based on Alibaba-NLP/gte-base-en-v1.5
results:
- task:
type: triplet
name: Triplet
dataset:
name: Unknown
type: unknown
metrics:
- type: cosine_accuracy
value: 1.0
name: Cosine Accuracy
- type: cosine_accuracy
value: 1.0
name: Cosine Accuracy
- task:
type: silhouette
name: Silhouette
dataset:
name: Unknown
type: unknown
metrics:
- type: silhouette_cosine
value: 0.9872768521308899
name: Silhouette Cosine
- type: silhouette_euclidean
value: 0.8968985080718994
name: Silhouette Euclidean
- type: silhouette_cosine
value: 0.9871986508369446
name: Silhouette Cosine
- type: silhouette_euclidean
value: 0.8965350389480591
name: Silhouette Euclidean
---
# SentenceTransformer based on Alibaba-NLP/gte-base-en-v1.5
This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [Alibaba-NLP/gte-base-en-v1.5](https://huggingface.co/Alibaba-NLP/gte-base-en-v1.5). It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
## Model Details
### Model Description
- **Model Type:** Sentence Transformer
- **Base model:** [Alibaba-NLP/gte-base-en-v1.5](https://huggingface.co/Alibaba-NLP/gte-base-en-v1.5) <!-- at revision a829fd0e060bb84554da0dfd354d0de0f7712b7f -->
- **Maximum Sequence Length:** 512 tokens
- **Output Dimensionality:** 768 dimensions
- **Similarity Function:** Cosine Similarity
<!-- - **Training Dataset:** Unknown -->
<!-- - **Language:** Unknown -->
<!-- - **License:** Unknown -->
### Model Sources
- **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
### Full Model Architecture
```
SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: NewModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
)
```
## Usage
### Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
```bash
pip install -U sentence-transformers
```
Then you can load this model and run inference.
```python
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("albertus-sussex/veriscrape-sbert-camera-reference_2_to_verify_8-fold-1")
# Run inference
sentences = [
'$19.95',
'$32.33',
': Bell + Howell',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
```
<!--
### Direct Usage (Transformers)
<details><summary>Click to see the direct usage in Transformers</summary>
</details>
-->
<!--
### Downstream Usage (Sentence Transformers)
You can finetune this model on your own dataset.
<details><summary>Click to expand</summary>
</details>
-->
<!--
### Out-of-Scope Use
*List how the model may foreseeably be misused and address what users ought not to do with the model.*
-->
## Evaluation
### Metrics
#### Triplet
* Evaluated with [<code>TripletEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.TripletEvaluator)
| Metric | Value |
|:--------------------|:--------|
| **cosine_accuracy** | **1.0** |
#### Silhouette
* Evaluated with <code>veriscrape.training.SilhouetteEvaluator</code>
| Metric | Value |
|:----------------------|:-----------|
| **silhouette_cosine** | **0.9873** |
| silhouette_euclidean | 0.8969 |
#### Triplet
* Evaluated with [<code>TripletEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.TripletEvaluator)
| Metric | Value |
|:--------------------|:--------|
| **cosine_accuracy** | **1.0** |
#### Silhouette
* Evaluated with <code>veriscrape.training.SilhouetteEvaluator</code>
| Metric | Value |
|:----------------------|:-----------|
| **silhouette_cosine** | **0.9872** |
| silhouette_euclidean | 0.8965 |
<!--
## Bias, Risks and Limitations
*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
-->
<!--
### Recommendations
*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
-->
## Training Details
### Training Dataset
#### Unnamed Dataset
* Size: 2,142 training samples
* Columns: <code>anchor</code>, <code>positive</code>, <code>negative</code>, <code>pos_attr_name</code>, and <code>neg_attr_name</code>
* Approximate statistics based on the first 1000 samples:
| | anchor | positive | negative | pos_attr_name | neg_attr_name |
|:--------|:---------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:-------------------------------------------------------------------------------|:-------------------------------------------------------------------------------|
| type | string | string | string | string | string |
| details | <ul><li>min: 3 tokens</li><li>mean: 11.2 tokens</li><li>max: 54 tokens</li></ul> | <ul><li>min: 3 tokens</li><li>mean: 11.62 tokens</li><li>max: 59 tokens</li></ul> | <ul><li>min: 3 tokens</li><li>mean: 11.39 tokens</li><li>max: 59 tokens</li></ul> | <ul><li>min: 3 tokens</li><li>mean: 3.0 tokens</li><li>max: 3 tokens</li></ul> | <ul><li>min: 3 tokens</li><li>mean: 3.0 tokens</li><li>max: 3 tokens</li></ul> |
* Samples:
| anchor | positive | negative | pos_attr_name | neg_attr_name |
|:--------------------------------------------------------------------------------------------------------------------------------|:--------------------------------------------------------------------------------------------------------------------------------------------------------|:--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:-------------------|:-------------------|
| <code>$146.95</code> | <code>$333.96</code> | <code>New! SONY Cyber-Shot DSC-HX5V 10.2MP Digital Camera Black-10x optical zoom, 25mm wide angle Sony G Lens, 3.0" LCD Screen!! Including 1 bonus accessoy-New *4GB* Memory Stick!!</code> | <code>price</code> | <code>model</code> |
| <code>Sony (alpha) NEX-5 Digital Camera Kit - Silver - with 18-55mm F3.5-5.6 E-mount Lens & Sony 16mm F/2.8 E-mount Lens</code> | <code>EasyShare M575 Point & Shoot Digital Camera</code> | <code>$799.95</code> | <code>model</code> | <code>price</code> |
| <code>DC150 Point & Shoot Digital Camera</code> | <code>Nikon Coolpix S70 12.1MP Digital Camera w/5x Optical VR Zoom (Champagne/Brown) BigVALUEInc Accessory Saver 8GB EL12 Battery/Charger Bundle</code> | <code>$154.16</code> | <code>model</code> | <code>price</code> |
* Loss: [<code>TripletLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#tripletloss) with these parameters:
```json
{
"distance_metric": "TripletDistanceMetric.EUCLIDEAN",
"triplet_margin": 5
}
```
### Evaluation Dataset
#### Unnamed Dataset
* Size: 239 evaluation samples
* Columns: <code>anchor</code>, <code>positive</code>, <code>negative</code>, <code>pos_attr_name</code>, and <code>neg_attr_name</code>
* Approximate statistics based on the first 239 samples:
| | anchor | positive | negative | pos_attr_name | neg_attr_name |
|:--------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:-------------------------------------------------------------------------------|:-------------------------------------------------------------------------------|
| type | string | string | string | string | string |
| details | <ul><li>min: 3 tokens</li><li>mean: 11.73 tokens</li><li>max: 54 tokens</li></ul> | <ul><li>min: 3 tokens</li><li>mean: 12.13 tokens</li><li>max: 49 tokens</li></ul> | <ul><li>min: 3 tokens</li><li>mean: 10.64 tokens</li><li>max: 59 tokens</li></ul> | <ul><li>min: 3 tokens</li><li>mean: 3.0 tokens</li><li>max: 3 tokens</li></ul> | <ul><li>min: 3 tokens</li><li>mean: 3.0 tokens</li><li>max: 3 tokens</li></ul> |
* Samples:
| anchor | positive | negative | pos_attr_name | neg_attr_name |
|:--------------------------------------------------------------------------------------|:--------------------------------------------------------------------------------------------|:---------------------|:--------------------------|:-------------------|
| <code>: Sony</code> | <code>Panasonic</code> | <code>$599.00</code> | <code>manufacturer</code> | <code>price</code> |
| <code>Nikon Coolpix P100 Point & Shoot Digital Camera - 10.3 Megapixel - 3"...</code> | <code>Kodak Easyshare M580 Point & Shoot Digital Camera - 14 Megapixel - 3" Color...</code> | <code>$299.99</code> | <code>model</code> | <code>price</code> |
| <code>Canon</code> | <code>General Electric Company</code> | <code>$179.00</code> | <code>manufacturer</code> | <code>price</code> |
* Loss: [<code>TripletLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#tripletloss) with these parameters:
```json
{
"distance_metric": "TripletDistanceMetric.EUCLIDEAN",
"triplet_margin": 5
}
```
### Training Hyperparameters
#### Non-Default Hyperparameters
- `eval_strategy`: epoch
- `per_device_train_batch_size`: 128
- `per_device_eval_batch_size`: 128
- `num_train_epochs`: 5
- `warmup_ratio`: 0.1
#### All Hyperparameters
<details><summary>Click to expand</summary>
- `overwrite_output_dir`: False
- `do_predict`: False
- `eval_strategy`: epoch
- `prediction_loss_only`: True
- `per_device_train_batch_size`: 128
- `per_device_eval_batch_size`: 128
- `per_gpu_train_batch_size`: None
- `per_gpu_eval_batch_size`: None
- `gradient_accumulation_steps`: 1
- `eval_accumulation_steps`: None
- `torch_empty_cache_steps`: None
- `learning_rate`: 5e-05
- `weight_decay`: 0.0
- `adam_beta1`: 0.9
- `adam_beta2`: 0.999
- `adam_epsilon`: 1e-08
- `max_grad_norm`: 1.0
- `num_train_epochs`: 5
- `max_steps`: -1
- `lr_scheduler_type`: linear
- `lr_scheduler_kwargs`: {}
- `warmup_ratio`: 0.1
- `warmup_steps`: 0
- `log_level`: passive
- `log_level_replica`: warning
- `log_on_each_node`: True
- `logging_nan_inf_filter`: True
- `save_safetensors`: True
- `save_on_each_node`: False
- `save_only_model`: False
- `restore_callback_states_from_checkpoint`: False
- `no_cuda`: False
- `use_cpu`: False
- `use_mps_device`: False
- `seed`: 42
- `data_seed`: None
- `jit_mode_eval`: False
- `use_ipex`: False
- `bf16`: False
- `fp16`: False
- `fp16_opt_level`: O1
- `half_precision_backend`: auto
- `bf16_full_eval`: False
- `fp16_full_eval`: False
- `tf32`: None
- `local_rank`: 0
- `ddp_backend`: None
- `tpu_num_cores`: None
- `tpu_metrics_debug`: False
- `debug`: []
- `dataloader_drop_last`: False
- `dataloader_num_workers`: 0
- `dataloader_prefetch_factor`: None
- `past_index`: -1
- `disable_tqdm`: False
- `remove_unused_columns`: True
- `label_names`: None
- `load_best_model_at_end`: False
- `ignore_data_skip`: False
- `fsdp`: []
- `fsdp_min_num_params`: 0
- `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
- `fsdp_transformer_layer_cls_to_wrap`: None
- `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
- `deepspeed`: None
- `label_smoothing_factor`: 0.0
- `optim`: adamw_torch
- `optim_args`: None
- `adafactor`: False
- `group_by_length`: False
- `length_column_name`: length
- `ddp_find_unused_parameters`: None
- `ddp_bucket_cap_mb`: None
- `ddp_broadcast_buffers`: False
- `dataloader_pin_memory`: True
- `dataloader_persistent_workers`: False
- `skip_memory_metrics`: True
- `use_legacy_prediction_loop`: False
- `push_to_hub`: False
- `resume_from_checkpoint`: None
- `hub_model_id`: None
- `hub_strategy`: every_save
- `hub_private_repo`: False
- `hub_always_push`: False
- `gradient_checkpointing`: False
- `gradient_checkpointing_kwargs`: None
- `include_inputs_for_metrics`: False
- `eval_do_concat_batches`: True
- `fp16_backend`: auto
- `push_to_hub_model_id`: None
- `push_to_hub_organization`: None
- `mp_parameters`:
- `auto_find_batch_size`: False
- `full_determinism`: False
- `torchdynamo`: None
- `ray_scope`: last
- `ddp_timeout`: 1800
- `torch_compile`: False
- `torch_compile_backend`: None
- `torch_compile_mode`: None
- `dispatch_batches`: None
- `split_batches`: None
- `include_tokens_per_second`: False
- `include_num_input_tokens_seen`: False
- `neftune_noise_alpha`: None
- `optim_target_modules`: None
- `batch_eval_metrics`: False
- `eval_on_start`: False
- `use_liger_kernel`: False
- `eval_use_gather_object`: False
- `prompts`: None
- `batch_sampler`: batch_sampler
- `multi_dataset_batch_sampler`: proportional
</details>
### Training Logs
| Epoch | Step | Training Loss | Validation Loss | cosine_accuracy | silhouette_cosine |
|:-----:|:----:|:-------------:|:---------------:|:---------------:|:-----------------:|
| -1 | -1 | - | - | 0.8452 | 0.3814 |
| 1.0 | 17 | 0.4662 | 0.0 | 1.0 | 0.9802 |
| 2.0 | 34 | 0.0 | 0.0 | 1.0 | 0.9866 |
| 3.0 | 51 | 0.0 | 0.0 | 1.0 | 0.9872 |
| 4.0 | 68 | 0.0 | 0.0 | 1.0 | 0.9873 |
| 5.0 | 85 | 0.0 | 0.0 | 1.0 | 0.9873 |
| -1 | -1 | - | - | 1.0 | 0.9872 |
### Framework Versions
- Python: 3.10.16
- Sentence Transformers: 4.0.1
- Transformers: 4.45.2
- PyTorch: 2.5.1+cu124
- Accelerate: 1.5.2
- Datasets: 3.1.0
- Tokenizers: 0.20.3
## Citation
### BibTeX
#### Sentence Transformers
```bibtex
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
```
#### TripletLoss
```bibtex
@misc{hermans2017defense,
title={In Defense of the Triplet Loss for Person Re-Identification},
author={Alexander Hermans and Lucas Beyer and Bastian Leibe},
year={2017},
eprint={1703.07737},
archivePrefix={arXiv},
primaryClass={cs.CV}
}
```
<!--
## Glossary
*Clearly define terms in order to be accessible across audiences.*
-->
<!--
## Model Card Authors
*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
-->
<!--
## Model Card Contact
*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
-->