albertus-sussex's picture
Add new SentenceTransformer model
c34b56f verified
metadata
tags:
  - sentence-transformers
  - sentence-similarity
  - feature-extraction
  - generated_from_trainer
  - dataset_size:26678
  - loss:TripletLoss
base_model: Alibaba-NLP/gte-base-en-v1.5
widget:
  - source_sentence: '8'
    sentences:
      - title
      - mpaa_rating
      - G
      - '1'
  - source_sentence: For Colored Girls
    sentences:
      - title
      - It's Kind of a Funny Story
      - mpaa_rating
      - PG
  - source_sentence: D
    sentences:
      - Foreign Language
      - genre
      - C
      - title
  - source_sentence: Jackass 3-D
    sentences:
      - director
      - title
      - Robert Rodriguez
      - Megamind
  - source_sentence: Adam & Steve (2005)
    sentences:
      - Comedy
      - genre
      - Lilies of the Field (1963)
      - title
pipeline_tag: sentence-similarity
library_name: sentence-transformers
metrics:
  - cosine_accuracy
  - silhouette_cosine
  - silhouette_euclidean
model-index:
  - name: SentenceTransformer based on Alibaba-NLP/gte-base-en-v1.5
    results:
      - task:
          type: triplet
          name: Triplet
        dataset:
          name: Unknown
          type: unknown
        metrics:
          - type: cosine_accuracy
            value: 1
            name: Cosine Accuracy
          - type: cosine_accuracy
            value: 0.998785674571991
            name: Cosine Accuracy
      - task:
          type: silhouette
          name: Silhouette
        dataset:
          name: Unknown
          type: unknown
        metrics:
          - type: silhouette_cosine
            value: 0.891865074634552
            name: Silhouette Cosine
          - type: silhouette_euclidean
            value: 0.7375457882881165
            name: Silhouette Euclidean
          - type: silhouette_cosine
            value: 0.8950619101524353
            name: Silhouette Cosine
          - type: silhouette_euclidean
            value: 0.7412229180335999
            name: Silhouette Euclidean

SentenceTransformer based on Alibaba-NLP/gte-base-en-v1.5

This is a sentence-transformers model finetuned from Alibaba-NLP/gte-base-en-v1.5. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.

Model Details

Model Description

  • Model Type: Sentence Transformer
  • Base model: Alibaba-NLP/gte-base-en-v1.5
  • Maximum Sequence Length: 32 tokens
  • Output Dimensionality: 768 dimensions
  • Similarity Function: Cosine Similarity

Model Sources

Full Model Architecture

SentenceTransformer(
  (0): Transformer({'max_seq_length': 32, 'do_lower_case': False}) with Transformer model: NewModel 
  (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
)

Usage

Direct Usage (Sentence Transformers)

First install the Sentence Transformers library:

pip install -U sentence-transformers

Then you can load this model and run inference.

from sentence_transformers import SentenceTransformer

# Download from the 🤗 Hub
model = SentenceTransformer("albertus-sussex/veriscrape-sbert-movie-wo-ref-gpt-4o-mini")
# Run inference
sentences = [
    'Adam & Steve (2005)',
    'Lilies of the Field (1963)',
    'Comedy',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]

# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]

Evaluation

Metrics

Triplet

Metric Value
cosine_accuracy 1.0

Silhouette

  • Evaluated with veriscrape.training.SilhouetteEvaluator
Metric Value
silhouette_cosine 0.8919
silhouette_euclidean 0.7375

Triplet

Metric Value
cosine_accuracy 0.9988

Silhouette

  • Evaluated with veriscrape.training.SilhouetteEvaluator
Metric Value
silhouette_cosine 0.8951
silhouette_euclidean 0.7412

Training Details

Training Dataset

Unnamed Dataset

  • Size: 26,678 training samples
  • Columns: anchor, positive, negative, pos_attr_name, neg_attr_name, and website_id
  • Approximate statistics based on the first 1000 samples:
    anchor positive negative pos_attr_name neg_attr_name website_id
    type string string string string string int
    details
    • min: 3 tokens
    • mean: 5.19 tokens
    • max: 22 tokens
    • min: 3 tokens
    • mean: 5.21 tokens
    • max: 27 tokens
    • min: 3 tokens
    • mean: 5.37 tokens
    • max: 21 tokens
    • min: 3 tokens
    • mean: 3.5 tokens
    • max: 6 tokens
    • min: 3 tokens
    • mean: 3.9 tokens
    • max: 6 tokens
    • 0: ~2.80%
    • 1: ~5.90%
    • 2: ~16.90%
    • 3: ~6.00%
    • 4: ~10.60%
    • 5: ~8.70%
    • 6: ~30.40%
    • 7: ~6.60%
    • 8: ~6.70%
    • 9: ~5.40%
  • Samples:
    anchor positive negative pos_attr_name neg_attr_name website_id
    10/27/2005 --- Richard Linklater mpaa_rating director 4
    Red Nowhere Boy Thriller title genre 6
    PG R Lars von Trier mpaa_rating director 3
  • Loss: TripletLoss with these parameters:
    {
        "distance_metric": "TripletDistanceMetric.EUCLIDEAN",
        "triplet_margin": 5
    }
    

Evaluation Dataset

Unnamed Dataset

  • Size: 2,965 evaluation samples
  • Columns: anchor, positive, negative, pos_attr_name, neg_attr_name, and website_id
  • Approximate statistics based on the first 1000 samples:
    anchor positive negative pos_attr_name neg_attr_name website_id
    type string string string string string int
    details
    • min: 3 tokens
    • mean: 5.14 tokens
    • max: 22 tokens
    • min: 3 tokens
    • mean: 5.37 tokens
    • max: 27 tokens
    • min: 3 tokens
    • mean: 5.38 tokens
    • max: 22 tokens
    • min: 3 tokens
    • mean: 3.55 tokens
    • max: 6 tokens
    • min: 3 tokens
    • mean: 3.82 tokens
    • max: 6 tokens
    • 0: ~3.50%
    • 1: ~6.50%
    • 2: ~16.20%
    • 3: ~4.90%
    • 4: ~10.10%
    • 5: ~8.00%
    • 6: ~30.90%
    • 7: ~6.30%
    • 8: ~8.30%
    • 9: ~5.30%
  • Samples:
    anchor positive negative pos_attr_name neg_attr_name website_id
    Tangled Nowhere Boy G title mpaa_rating 6
    B B Hayao Miyazaki title director 2
    R 1 hour 34 minutes Martin Scorsese mpaa_rating director 4
  • Loss: TripletLoss with these parameters:
    {
        "distance_metric": "TripletDistanceMetric.EUCLIDEAN",
        "triplet_margin": 5
    }
    

Training Hyperparameters

Non-Default Hyperparameters

  • eval_strategy: epoch
  • per_device_train_batch_size: 128
  • per_device_eval_batch_size: 128
  • num_train_epochs: 5
  • warmup_ratio: 0.1

All Hyperparameters

Click to expand
  • overwrite_output_dir: False
  • do_predict: False
  • eval_strategy: epoch
  • prediction_loss_only: True
  • per_device_train_batch_size: 128
  • per_device_eval_batch_size: 128
  • per_gpu_train_batch_size: None
  • per_gpu_eval_batch_size: None
  • gradient_accumulation_steps: 1
  • eval_accumulation_steps: None
  • torch_empty_cache_steps: None
  • learning_rate: 5e-05
  • weight_decay: 0.0
  • adam_beta1: 0.9
  • adam_beta2: 0.999
  • adam_epsilon: 1e-08
  • max_grad_norm: 1.0
  • num_train_epochs: 5
  • max_steps: -1
  • lr_scheduler_type: linear
  • lr_scheduler_kwargs: {}
  • warmup_ratio: 0.1
  • warmup_steps: 0
  • log_level: passive
  • log_level_replica: warning
  • log_on_each_node: True
  • logging_nan_inf_filter: True
  • save_safetensors: True
  • save_on_each_node: False
  • save_only_model: False
  • restore_callback_states_from_checkpoint: False
  • no_cuda: False
  • use_cpu: False
  • use_mps_device: False
  • seed: 42
  • data_seed: None
  • jit_mode_eval: False
  • use_ipex: False
  • bf16: False
  • fp16: False
  • fp16_opt_level: O1
  • half_precision_backend: auto
  • bf16_full_eval: False
  • fp16_full_eval: False
  • tf32: None
  • local_rank: 0
  • ddp_backend: None
  • tpu_num_cores: None
  • tpu_metrics_debug: False
  • debug: []
  • dataloader_drop_last: False
  • dataloader_num_workers: 0
  • dataloader_prefetch_factor: None
  • past_index: -1
  • disable_tqdm: False
  • remove_unused_columns: True
  • label_names: None
  • load_best_model_at_end: False
  • ignore_data_skip: False
  • fsdp: []
  • fsdp_min_num_params: 0
  • fsdp_config: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
  • fsdp_transformer_layer_cls_to_wrap: None
  • accelerator_config: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
  • deepspeed: None
  • label_smoothing_factor: 0.0
  • optim: adamw_torch
  • optim_args: None
  • adafactor: False
  • group_by_length: False
  • length_column_name: length
  • ddp_find_unused_parameters: None
  • ddp_bucket_cap_mb: None
  • ddp_broadcast_buffers: False
  • dataloader_pin_memory: True
  • dataloader_persistent_workers: False
  • skip_memory_metrics: True
  • use_legacy_prediction_loop: False
  • push_to_hub: False
  • resume_from_checkpoint: None
  • hub_model_id: None
  • hub_strategy: every_save
  • hub_private_repo: False
  • hub_always_push: False
  • gradient_checkpointing: False
  • gradient_checkpointing_kwargs: None
  • include_inputs_for_metrics: False
  • eval_do_concat_batches: True
  • fp16_backend: auto
  • push_to_hub_model_id: None
  • push_to_hub_organization: None
  • mp_parameters:
  • auto_find_batch_size: False
  • full_determinism: False
  • torchdynamo: None
  • ray_scope: last
  • ddp_timeout: 1800
  • torch_compile: False
  • torch_compile_backend: None
  • torch_compile_mode: None
  • dispatch_batches: None
  • split_batches: None
  • include_tokens_per_second: False
  • include_num_input_tokens_seen: False
  • neftune_noise_alpha: None
  • optim_target_modules: None
  • batch_eval_metrics: False
  • eval_on_start: False
  • use_liger_kernel: False
  • eval_use_gather_object: False
  • prompts: None
  • batch_sampler: batch_sampler
  • multi_dataset_batch_sampler: proportional

Training Logs

Epoch Step Training Loss Validation Loss cosine_accuracy silhouette_cosine
-1 -1 - - 0.4799 0.0713
1.0 209 0.5109 0.0023 1.0 0.8604
2.0 418 0.0071 0.0 1.0 0.8856
3.0 627 0.004 0.0 1.0 0.8873
4.0 836 0.003 0.0006 1.0 0.8946
5.0 1045 0.0028 0.0019 1.0 0.8919
-1 -1 - - 0.9988 0.8951

Framework Versions

  • Python: 3.10.16
  • Sentence Transformers: 4.0.1
  • Transformers: 4.45.2
  • PyTorch: 2.5.1+cu124
  • Accelerate: 1.6.0
  • Datasets: 3.1.0
  • Tokenizers: 0.20.3

Citation

BibTeX

Sentence Transformers

@inproceedings{reimers-2019-sentence-bert,
    title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
    author = "Reimers, Nils and Gurevych, Iryna",
    booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
    month = "11",
    year = "2019",
    publisher = "Association for Computational Linguistics",
    url = "https://arxiv.org/abs/1908.10084",
}

TripletLoss

@misc{hermans2017defense,
    title={In Defense of the Triplet Loss for Person Re-Identification},
    author={Alexander Hermans and Lucas Beyer and Bastian Leibe},
    year={2017},
    eprint={1703.07737},
    archivePrefix={arXiv},
    primaryClass={cs.CV}
}