Robotics
LeRobot
Safetensors
aposadasn commited on
Commit
2fc77ba
·
verified ·
1 Parent(s): 38a845d

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +9 -54
README.md CHANGED
@@ -1,63 +1,18 @@
1
  ---
2
- base_model: lerobot/smolvla_base
3
- datasets: arclabmit/lx7r_pickup_dataset
4
  library_name: lerobot
5
- license: apache-2.0
6
- model_name: smolvla
7
  pipeline_tag: robotics
8
- tags:
9
- - smolvla
10
- - lerobot
11
- - robotics
12
  ---
13
 
14
- # Model Card for smolvla
15
 
16
- <!-- Provide a quick summary of what the model is/does. -->
17
 
 
18
 
19
- [SmolVLA](https://huggingface.co/papers/2506.01844) is a compact, efficient vision-language-action model that achieves competitive performance at reduced computational costs and can be deployed on consumer-grade hardware.
20
-
21
-
22
- This policy has been trained and pushed to the Hub using [LeRobot](https://github.com/huggingface/lerobot).
23
- See the full documentation at [LeRobot Docs](https://huggingface.co/docs/lerobot/index).
24
-
25
- ---
26
-
27
- ## How to Get Started with the Model
28
-
29
- For a complete walkthrough, see the [training guide](https://huggingface.co/docs/lerobot/il_robots#train-a-policy).
30
- Below is the short version on how to train and run inference/eval:
31
-
32
- ### Train from scratch
33
-
34
  ```bash
35
- python -m lerobot.scripts.train \
36
- --dataset.repo_id=${HF_USER}/<dataset> \
37
- --policy.type=act \
38
- --output_dir=outputs/train/<desired_policy_repo_id> \
39
- --job_name=lerobot_training \
40
- --policy.device=cuda \
41
- --policy.repo_id=${HF_USER}/<desired_policy_repo_id>
42
- --wandb.enable=true
43
- ```
44
-
45
- *Writes checkpoints to `outputs/train/<desired_policy_repo_id>/checkpoints/`.*
46
-
47
- ### Evaluate the policy/run inference
48
-
49
- ```bash
50
- python -m lerobot.record \
51
- --robot.type=so100_follower \
52
- --dataset.repo_id=<hf_user>/eval_<dataset> \
53
- --policy.path=<hf_user>/<desired_policy_repo_id> \
54
- --episodes=10
55
- ```
56
-
57
- Prefix the dataset repo with **eval\_** and supply `--policy.path` pointing to a local or hub checkpoint.
58
-
59
- ---
60
-
61
- ## Model Details
62
-
63
- * **License:** apache-2.0
 
1
  ---
2
+ license: mit
 
3
  library_name: lerobot
 
 
4
  pipeline_tag: robotics
 
 
 
 
5
  ---
6
 
7
+ This model was created using [pickup dataset](https://huggingface.co/datasets/arclabmit/lx7r_pickup_dataset)
8
 
9
+ Repo: [BEAVR](https://github.com/ARCLab-MIT/beavr-bot)
10
 
11
+ Paper: [Paper](https://arxiv.org/abs/2508.09606)
12
 
13
+ Example of training the [SmolVLA](https://arxiv.org/abs/2506.01844) neural network with from scratch:
 
 
 
 
 
 
 
 
 
 
 
 
 
 
14
  ```bash
15
+ python lerobot/scripts/train.py \
16
+ --policy.type=smolvla \
17
+ --dataset.repo_id=arclabmit/lx7r_pickup_dataset
18
+ ```