metadata
language: en
license: apache-2.0
tags:
- text-generation
- question-answering
- mcqa
- merged
- sft
- lora
base_model: AnnaelleMyriam/SFT_M3_model
MNLP M3 MCQA Merged Model
This model is a merged version of:
- Base SFT Model:
AnnaelleMyriam/SFT_M3_model
- LoRA Adapter:
aymanbakiri/MNLP_M3_mcqa_model_test
Model Description
This is a specialized model for Multiple Choice Question Answering (MCQA) tasks, created by:
- Starting with the SFT model
AnnaelleMyriam/SFT_M3_model
- Fine-tuning with LoRA adapters on MCQA data
- Merging the LoRA weights back into the base model
Usage
from transformers import AutoModelForCausalLM, AutoTokenizer
model = AutoModelForCausalLM.from_pretrained("aymanbakiri/MNLP_M3_mcqa_merged_model_test")
tokenizer = AutoTokenizer.from_pretrained("aymanbakiri/MNLP_M3_mcqa_merged_model_test")
# Example usage for MCQA
prompt = """Question: What is the capital of France?
Options: (A) London (B) Berlin (C) Paris (D) Madrid
Answer:"""
inputs = tokenizer(prompt, return_tensors="pt")
outputs = model.generate(**inputs, max_new_tokens=5)
answer = tokenizer.decode(outputs[0], skip_special_tokens=True)
print(answer)
Training Details
- Base Model: SFT model fine-tuned for instruction following
- LoRA Configuration: r=16, alpha=32, dropout=0.1
- Target Modules: q_proj, k_proj, v_proj, o_proj, gate_proj, up_proj, down_proj, lm_head
- Training Data: MNLP M2 MCQA Dataset
Performance
This merged model should provide better performance than the original LoRA adapter while being easier to deploy and use.