vit-finetuned2 / README.md
binjn's picture
End of training
9a0f77b verified
metadata
library_name: transformers
license: apache-2.0
base_model: microsoft/resnet-18
tags:
  - generated_from_trainer
metrics:
  - accuracy
model-index:
  - name: vit-finetuned2
    results: []

vit-finetuned2

This model is a fine-tuned version of microsoft/resnet-18 on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.8828
  • Accuracy: 0.746

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0002
  • train_batch_size: 64
  • eval_batch_size: 128
  • seed: 42
  • optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • num_epochs: 20

Training results

Training Loss Epoch Step Validation Loss Accuracy
No log 1.0 211 3.2058 0.2
No log 2.0 422 2.7863 0.27
3.5109 3.0 633 2.6225 0.306
3.5109 4.0 844 2.3383 0.392
2.6956 5.0 1055 2.1045 0.456
2.6956 6.0 1266 1.8551 0.504
2.6956 7.0 1477 1.6949 0.54
2.213 8.0 1688 1.5866 0.576
2.213 9.0 1899 1.3373 0.646
1.8406 10.0 2110 1.2958 0.64
1.8406 11.0 2321 1.3066 0.652
1.5618 12.0 2532 1.1972 0.664
1.5618 13.0 2743 1.1654 0.67
1.5618 14.0 2954 1.0900 0.7
1.3308 15.0 3165 1.0244 0.704
1.3308 16.0 3376 1.0534 0.706
1.1426 17.0 3587 0.9758 0.732
1.1426 18.0 3798 0.9583 0.716
1.0085 19.0 4009 0.9191 0.732
1.0085 20.0 4220 0.8828 0.746

Framework versions

  • Transformers 4.51.3
  • Pytorch 2.6.0+cu124
  • Datasets 3.6.0
  • Tokenizers 0.21.1