bnkc123's picture
Model save
d0b4a80 verified
metadata
language:
  - en
license: apache-2.0
tags:
  - sentence-transformers
  - sentence-similarity
  - feature-extraction
  - generated_from_trainer
  - dataset_size:6300
  - loss:MatryoshkaLoss
  - loss:MultipleNegativesRankingLoss
base_model: BAAI/bge-base-en-v1.5
widget:
  - source_sentence: What are the components of Comcast's domestic distribution revenue?
    sentences:
      - >-
        Cash used in investing activities was $2.3 billion for fiscal 2023,
        compared to $2.1 billion for fiscal 2022.
      - >-
        Domestic distribution revenue primarily includes revenue generated from
        the distribution of our television networks operating predominantly in
        the United States to traditional and virtual multichannel video
        providers, and from NBC-affiliated and Telemundo-affiliated local
        broadcast television stations. Our revenue from distribution agreements
        is generally based on the number of subscribers receiving the
        programming on our television networks and a per subscriber fee.
        Distribution revenue also includes Peacock subscription fees.
      - >-
        In January 2023, Alphabet Inc. announced a reduction of its workforce,
        consequently recording employee severance and related charges of $2.1
        billion for the year.
  - source_sentence: >-
      What was the noncash pre-tax impairment charge recorded due to the
      disposal of Vrio's operations in 2021, and what are the main components
      contributing to this amount?
    sentences:
      - >-
        The cash equities rate per contract (per 100 shares) for NYSE increased
        by 6%, from $0.045 in 2022 to $0.048 in 2023.
      - >-
        In the second quarter of 2021, we classified the Vrio disposal group as
        held-for-sale and reported the disposal group at fair value less cost to
        sell, which resulted in a noncash, pre-tax impairment charge of $4,555,
        including approximately $2,100 related to accumulated foreign currency
        translation adjustments and $2,500 related to property, plant and
        equipment and intangible assets.
      - >-
        SECRET LAIR - our internet-based storefront where MAGIC: THE GATHERING
        fans can purchase exclusive and limited versions of cards.
  - source_sentence: What does the Corporate and Other segment include in its composition?
    sentences:
      - >-
        The segment consists of unallocated corporate expenses and
        administrative costs and activities not considered when evaluating
        segment performance as well as certain assets benefiting more than one
        segment. In addition, intersegment transactions are eliminated within
        the Corporate and Other segment.
      - >-
        Net cash provided by (used in) operating activities was recorded at
        $20,930 million for the reported year.
      - >-
        Forward-Looking Statements Certain statements in this report, other than
        purely historical information, including estimates, projections,
        statements relating to our business plans, objectives and expected
        operating results, and the assumptions upon which those statements are
        based, are “forward-looking statements” within the meaning of the
        Private Securities Litigation Reform Act of 1995, Section 27A of the
        Securities Act of 1933 and Section 21E of the Securities Exchange Act of
        1934.
  - source_sentence: >-
      What was the purchase price for the repurchase of Mobility preferred
      interests by AT&T in 2023?
    sentences:
      - >-
        Net revenue increased $1.5 billion, or 19%, to $9.6 billion in 2023 from
        $8.1 billion in 2022. On a constant dollar basis, net revenue increased
        20%. Comparable sales increased 13%, or 14% on a constant dollar basis.
        The increase in net revenue was primarily due to increased Americas net
        revenue. China Mainland and Rest of World net revenue also increased.
      - >-
        Google Services includes products and services such as ads, Android,
        Chrome, devices, Google Maps, Google Play, Search, and YouTube. Google
        Services generates revenues primarily from advertising; fees received
        for consumer subscription-based products such. as YouTube TV, YouTube
        Music and Premium, and NFL Sunday Ticket; and the sale of apps and
        in-app purchases and devices.
      - >-
        In April 2023, we also accepted the December 2022 put option notice from
        the AT&T pension trust and repurchased the remaining 213 million
        Mobility preferred interests for a purchase price, including accrued and
        unpaid distributions, of $5,414.
  - source_sentence: >-
      What is the maximum leverage ratio allowed before default under the
      company's credit facility?
    sentences:
      - >-
        If the company's leverage ratio exceeds 3.50 to 1, it would be in
        default of its revolving credit facility, impairing its ability to
        borrow under the facility.
      - >-
        Research and Development Because the industries in which the Company
        competes are characterized by rapid technological advances, the
        Company’s ability to compete successfully depends heavily upon its
        ability to ensure a continual and timely flow of competitive products,
        services and technologies to the marketplace.
      - >-
        Visa is focused on extending, enhancing and investing in VisaNet, their
        proprietary advanced transaction processing network, to offer a single
        connection point for facilitating payment transactions to multiple
        endpoints through various form factors.
datasets:
  - philschmid/finanical-rag-embedding-dataset
pipeline_tag: sentence-similarity
library_name: sentence-transformers
metrics:
  - cosine_accuracy@1
  - cosine_accuracy@3
  - cosine_accuracy@5
  - cosine_accuracy@10
  - cosine_precision@1
  - cosine_precision@3
  - cosine_precision@5
  - cosine_precision@10
  - cosine_recall@1
  - cosine_recall@3
  - cosine_recall@5
  - cosine_recall@10
  - cosine_ndcg@10
  - cosine_mrr@10
  - cosine_map@100
model-index:
  - name: BGE base Financial Matryoshka
    results:
      - task:
          type: information-retrieval
          name: Information Retrieval
        dataset:
          name: dim 768
          type: dim_768
        metrics:
          - type: cosine_accuracy@1
            value: 0.6771428571428572
            name: Cosine Accuracy@1
          - type: cosine_accuracy@3
            value: 0.8371428571428572
            name: Cosine Accuracy@3
          - type: cosine_accuracy@5
            value: 0.8685714285714285
            name: Cosine Accuracy@5
          - type: cosine_accuracy@10
            value: 0.9185714285714286
            name: Cosine Accuracy@10
          - type: cosine_precision@1
            value: 0.6771428571428572
            name: Cosine Precision@1
          - type: cosine_precision@3
            value: 0.27904761904761904
            name: Cosine Precision@3
          - type: cosine_precision@5
            value: 0.17371428571428568
            name: Cosine Precision@5
          - type: cosine_precision@10
            value: 0.09185714285714283
            name: Cosine Precision@10
          - type: cosine_recall@1
            value: 0.6771428571428572
            name: Cosine Recall@1
          - type: cosine_recall@3
            value: 0.8371428571428572
            name: Cosine Recall@3
          - type: cosine_recall@5
            value: 0.8685714285714285
            name: Cosine Recall@5
          - type: cosine_recall@10
            value: 0.9185714285714286
            name: Cosine Recall@10
          - type: cosine_ndcg@10
            value: 0.800782444183487
            name: Cosine Ndcg@10
          - type: cosine_mrr@10
            value: 0.762721088435374
            name: Cosine Mrr@10
          - type: cosine_map@100
            value: 0.7655884035994069
            name: Cosine Map@100
      - task:
          type: information-retrieval
          name: Information Retrieval
        dataset:
          name: dim 512
          type: dim_512
        metrics:
          - type: cosine_accuracy@1
            value: 0.6828571428571428
            name: Cosine Accuracy@1
          - type: cosine_accuracy@3
            value: 0.8371428571428572
            name: Cosine Accuracy@3
          - type: cosine_accuracy@5
            value: 0.8757142857142857
            name: Cosine Accuracy@5
          - type: cosine_accuracy@10
            value: 0.92
            name: Cosine Accuracy@10
          - type: cosine_precision@1
            value: 0.6828571428571428
            name: Cosine Precision@1
          - type: cosine_precision@3
            value: 0.27904761904761904
            name: Cosine Precision@3
          - type: cosine_precision@5
            value: 0.17514285714285713
            name: Cosine Precision@5
          - type: cosine_precision@10
            value: 0.09199999999999998
            name: Cosine Precision@10
          - type: cosine_recall@1
            value: 0.6828571428571428
            name: Cosine Recall@1
          - type: cosine_recall@3
            value: 0.8371428571428572
            name: Cosine Recall@3
          - type: cosine_recall@5
            value: 0.8757142857142857
            name: Cosine Recall@5
          - type: cosine_recall@10
            value: 0.92
            name: Cosine Recall@10
          - type: cosine_ndcg@10
            value: 0.80444342170685
            name: Cosine Ndcg@10
          - type: cosine_mrr@10
            value: 0.7670583900226756
            name: Cosine Mrr@10
          - type: cosine_map@100
            value: 0.7699510134898729
            name: Cosine Map@100
      - task:
          type: information-retrieval
          name: Information Retrieval
        dataset:
          name: dim 256
          type: dim_256
        metrics:
          - type: cosine_accuracy@1
            value: 0.6757142857142857
            name: Cosine Accuracy@1
          - type: cosine_accuracy@3
            value: 0.8228571428571428
            name: Cosine Accuracy@3
          - type: cosine_accuracy@5
            value: 0.8642857142857143
            name: Cosine Accuracy@5
          - type: cosine_accuracy@10
            value: 0.9185714285714286
            name: Cosine Accuracy@10
          - type: cosine_precision@1
            value: 0.6757142857142857
            name: Cosine Precision@1
          - type: cosine_precision@3
            value: 0.2742857142857143
            name: Cosine Precision@3
          - type: cosine_precision@5
            value: 0.17285714285714285
            name: Cosine Precision@5
          - type: cosine_precision@10
            value: 0.09185714285714283
            name: Cosine Precision@10
          - type: cosine_recall@1
            value: 0.6757142857142857
            name: Cosine Recall@1
          - type: cosine_recall@3
            value: 0.8228571428571428
            name: Cosine Recall@3
          - type: cosine_recall@5
            value: 0.8642857142857143
            name: Cosine Recall@5
          - type: cosine_recall@10
            value: 0.9185714285714286
            name: Cosine Recall@10
          - type: cosine_ndcg@10
            value: 0.7984105242762846
            name: Cosine Ndcg@10
          - type: cosine_mrr@10
            value: 0.7599024943310656
            name: Cosine Mrr@10
          - type: cosine_map@100
            value: 0.7625291382895937
            name: Cosine Map@100
      - task:
          type: information-retrieval
          name: Information Retrieval
        dataset:
          name: dim 128
          type: dim_128
        metrics:
          - type: cosine_accuracy@1
            value: 0.6714285714285714
            name: Cosine Accuracy@1
          - type: cosine_accuracy@3
            value: 0.8114285714285714
            name: Cosine Accuracy@3
          - type: cosine_accuracy@5
            value: 0.8485714285714285
            name: Cosine Accuracy@5
          - type: cosine_accuracy@10
            value: 0.9014285714285715
            name: Cosine Accuracy@10
          - type: cosine_precision@1
            value: 0.6714285714285714
            name: Cosine Precision@1
          - type: cosine_precision@3
            value: 0.2704761904761904
            name: Cosine Precision@3
          - type: cosine_precision@5
            value: 0.16971428571428568
            name: Cosine Precision@5
          - type: cosine_precision@10
            value: 0.09014285714285714
            name: Cosine Precision@10
          - type: cosine_recall@1
            value: 0.6714285714285714
            name: Cosine Recall@1
          - type: cosine_recall@3
            value: 0.8114285714285714
            name: Cosine Recall@3
          - type: cosine_recall@5
            value: 0.8485714285714285
            name: Cosine Recall@5
          - type: cosine_recall@10
            value: 0.9014285714285715
            name: Cosine Recall@10
          - type: cosine_ndcg@10
            value: 0.7872870842648211
            name: Cosine Ndcg@10
          - type: cosine_mrr@10
            value: 0.7507193877551018
            name: Cosine Mrr@10
          - type: cosine_map@100
            value: 0.7542921487122674
            name: Cosine Map@100
      - task:
          type: information-retrieval
          name: Information Retrieval
        dataset:
          name: dim 64
          type: dim_64
        metrics:
          - type: cosine_accuracy@1
            value: 0.6242857142857143
            name: Cosine Accuracy@1
          - type: cosine_accuracy@3
            value: 0.7842857142857143
            name: Cosine Accuracy@3
          - type: cosine_accuracy@5
            value: 0.82
            name: Cosine Accuracy@5
          - type: cosine_accuracy@10
            value: 0.8828571428571429
            name: Cosine Accuracy@10
          - type: cosine_precision@1
            value: 0.6242857142857143
            name: Cosine Precision@1
          - type: cosine_precision@3
            value: 0.26142857142857145
            name: Cosine Precision@3
          - type: cosine_precision@5
            value: 0.16399999999999998
            name: Cosine Precision@5
          - type: cosine_precision@10
            value: 0.08828571428571429
            name: Cosine Precision@10
          - type: cosine_recall@1
            value: 0.6242857142857143
            name: Cosine Recall@1
          - type: cosine_recall@3
            value: 0.7842857142857143
            name: Cosine Recall@3
          - type: cosine_recall@5
            value: 0.82
            name: Cosine Recall@5
          - type: cosine_recall@10
            value: 0.8828571428571429
            name: Cosine Recall@10
          - type: cosine_ndcg@10
            value: 0.7546358861091382
            name: Cosine Ndcg@10
          - type: cosine_mrr@10
            value: 0.7135277777777775
            name: Cosine Mrr@10
          - type: cosine_map@100
            value: 0.7174129354945035
            name: Cosine Map@100

BGE base Financial Matryoshka

This is a sentence-transformers model finetuned from BAAI/bge-base-en-v1.5 on the finanical-rag-embedding-dataset dataset. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.

Model Details

Model Description

  • Model Type: Sentence Transformer
  • Base model: BAAI/bge-base-en-v1.5
  • Maximum Sequence Length: 512 tokens
  • Output Dimensionality: 768 dimensions
  • Similarity Function: Cosine Similarity
  • Training Dataset:
  • Language: en
  • License: apache-2.0

Model Sources

Full Model Architecture

SentenceTransformer(
  (0): Transformer({'max_seq_length': 512, 'do_lower_case': True}) with Transformer model: BertModel 
  (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
  (2): Normalize()
)

Usage

Direct Usage (Sentence Transformers)

First install the Sentence Transformers library:

pip install -U sentence-transformers

Then you can load this model and run inference.

from sentence_transformers import SentenceTransformer

# Download from the 🤗 Hub
model = SentenceTransformer("bnkc123/bge-base-financial-matryoshka")
# Run inference
sentences = [
    "What is the maximum leverage ratio allowed before default under the company's credit facility?",
    "If the company's leverage ratio exceeds 3.50 to 1, it would be in default of its revolving credit facility, impairing its ability to borrow under the facility.",
    'Research and Development Because the industries in which the Company competes are characterized by rapid technological advances, the Company’s ability to compete successfully depends heavily upon its ability to ensure a continual and timely flow of competitive products, services and technologies to the marketplace.',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]

# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]

Evaluation

Metrics

Information Retrieval

Metric Value
cosine_accuracy@1 0.6771
cosine_accuracy@3 0.8371
cosine_accuracy@5 0.8686
cosine_accuracy@10 0.9186
cosine_precision@1 0.6771
cosine_precision@3 0.279
cosine_precision@5 0.1737
cosine_precision@10 0.0919
cosine_recall@1 0.6771
cosine_recall@3 0.8371
cosine_recall@5 0.8686
cosine_recall@10 0.9186
cosine_ndcg@10 0.8008
cosine_mrr@10 0.7627
cosine_map@100 0.7656

Information Retrieval

Metric Value
cosine_accuracy@1 0.6829
cosine_accuracy@3 0.8371
cosine_accuracy@5 0.8757
cosine_accuracy@10 0.92
cosine_precision@1 0.6829
cosine_precision@3 0.279
cosine_precision@5 0.1751
cosine_precision@10 0.092
cosine_recall@1 0.6829
cosine_recall@3 0.8371
cosine_recall@5 0.8757
cosine_recall@10 0.92
cosine_ndcg@10 0.8044
cosine_mrr@10 0.7671
cosine_map@100 0.77

Information Retrieval

Metric Value
cosine_accuracy@1 0.6757
cosine_accuracy@3 0.8229
cosine_accuracy@5 0.8643
cosine_accuracy@10 0.9186
cosine_precision@1 0.6757
cosine_precision@3 0.2743
cosine_precision@5 0.1729
cosine_precision@10 0.0919
cosine_recall@1 0.6757
cosine_recall@3 0.8229
cosine_recall@5 0.8643
cosine_recall@10 0.9186
cosine_ndcg@10 0.7984
cosine_mrr@10 0.7599
cosine_map@100 0.7625

Information Retrieval

Metric Value
cosine_accuracy@1 0.6714
cosine_accuracy@3 0.8114
cosine_accuracy@5 0.8486
cosine_accuracy@10 0.9014
cosine_precision@1 0.6714
cosine_precision@3 0.2705
cosine_precision@5 0.1697
cosine_precision@10 0.0901
cosine_recall@1 0.6714
cosine_recall@3 0.8114
cosine_recall@5 0.8486
cosine_recall@10 0.9014
cosine_ndcg@10 0.7873
cosine_mrr@10 0.7507
cosine_map@100 0.7543

Information Retrieval

Metric Value
cosine_accuracy@1 0.6243
cosine_accuracy@3 0.7843
cosine_accuracy@5 0.82
cosine_accuracy@10 0.8829
cosine_precision@1 0.6243
cosine_precision@3 0.2614
cosine_precision@5 0.164
cosine_precision@10 0.0883
cosine_recall@1 0.6243
cosine_recall@3 0.7843
cosine_recall@5 0.82
cosine_recall@10 0.8829
cosine_ndcg@10 0.7546
cosine_mrr@10 0.7135
cosine_map@100 0.7174

Training Details

Training Dataset

finanical-rag-embedding-dataset

  • Dataset: finanical-rag-embedding-dataset at e0b1781
  • Size: 6,300 training samples
  • Columns: anchor and positive
  • Approximate statistics based on the first 1000 samples:
    anchor positive
    type string string
    details
    • min: 7 tokens
    • mean: 20.5 tokens
    • max: 43 tokens
    • min: 9 tokens
    • mean: 46.09 tokens
    • max: 512 tokens
  • Samples:
    anchor positive
    What was the amount of premiums written by Berkshire Hathaway's Insurance Underwriting in 2023, and how did it compare to the previous year? Premiums written increased $3.5 billion (24.1%) in 2023 compared to 2022. The increase was primarily due to RSUI and CapSpecialty ($2.1 billion), as well as comparative increases from BHSI and BH Direct, and to a lesser extent the other businesses. Premiums written
    What types of transportation equipment does XTRA Corporation manage in its fleet? XTRA manages a diverse fleet of approximately 90,000 units located at 47 facilities throughout the U.S. The fleet includes over-the-road and storage trailers, chassis, temperature-controlled vans and flatbed trailers.
    What seasonal trends affect the company's sales volumes? Sales volumes for the company are highest in the second fiscal quarter due to seasonal influences, particularly during the spring season in the regions it serves.
  • Loss: MatryoshkaLoss with these parameters:
    {
        "loss": "MultipleNegativesRankingLoss",
        "matryoshka_dims": [
            768,
            512,
            256,
            128,
            64
        ],
        "matryoshka_weights": [
            1,
            1,
            1,
            1,
            1
        ],
        "n_dims_per_step": -1
    }
    

Training Hyperparameters

Non-Default Hyperparameters

  • eval_strategy: epoch
  • per_device_train_batch_size: 32
  • per_device_eval_batch_size: 16
  • gradient_accumulation_steps: 16
  • learning_rate: 2e-05
  • num_train_epochs: 4
  • lr_scheduler_type: cosine
  • warmup_ratio: 0.1
  • bf16: True
  • tf32: True
  • load_best_model_at_end: True
  • optim: adamw_torch_fused
  • push_to_hub: True
  • hub_model_id: bnkc123/bge-base-financial-matryoshka
  • batch_sampler: no_duplicates

All Hyperparameters

Click to expand
  • overwrite_output_dir: False
  • do_predict: False
  • eval_strategy: epoch
  • prediction_loss_only: True
  • per_device_train_batch_size: 32
  • per_device_eval_batch_size: 16
  • per_gpu_train_batch_size: None
  • per_gpu_eval_batch_size: None
  • gradient_accumulation_steps: 16
  • eval_accumulation_steps: None
  • torch_empty_cache_steps: None
  • learning_rate: 2e-05
  • weight_decay: 0.0
  • adam_beta1: 0.9
  • adam_beta2: 0.999
  • adam_epsilon: 1e-08
  • max_grad_norm: 1.0
  • num_train_epochs: 4
  • max_steps: -1
  • lr_scheduler_type: cosine
  • lr_scheduler_kwargs: {}
  • warmup_ratio: 0.1
  • warmup_steps: 0
  • log_level: passive
  • log_level_replica: warning
  • log_on_each_node: True
  • logging_nan_inf_filter: True
  • save_safetensors: True
  • save_on_each_node: False
  • save_only_model: False
  • restore_callback_states_from_checkpoint: False
  • no_cuda: False
  • use_cpu: False
  • use_mps_device: False
  • seed: 42
  • data_seed: None
  • jit_mode_eval: False
  • use_ipex: False
  • bf16: True
  • fp16: False
  • fp16_opt_level: O1
  • half_precision_backend: auto
  • bf16_full_eval: False
  • fp16_full_eval: False
  • tf32: True
  • local_rank: 0
  • ddp_backend: None
  • tpu_num_cores: None
  • tpu_metrics_debug: False
  • debug: []
  • dataloader_drop_last: False
  • dataloader_num_workers: 0
  • dataloader_prefetch_factor: None
  • past_index: -1
  • disable_tqdm: False
  • remove_unused_columns: True
  • label_names: None
  • load_best_model_at_end: True
  • ignore_data_skip: False
  • fsdp: []
  • fsdp_min_num_params: 0
  • fsdp_config: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
  • tp_size: 0
  • fsdp_transformer_layer_cls_to_wrap: None
  • accelerator_config: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
  • deepspeed: None
  • label_smoothing_factor: 0.0
  • optim: adamw_torch_fused
  • optim_args: None
  • adafactor: False
  • group_by_length: False
  • length_column_name: length
  • ddp_find_unused_parameters: None
  • ddp_bucket_cap_mb: None
  • ddp_broadcast_buffers: False
  • dataloader_pin_memory: True
  • dataloader_persistent_workers: False
  • skip_memory_metrics: True
  • use_legacy_prediction_loop: False
  • push_to_hub: True
  • resume_from_checkpoint: None
  • hub_model_id: bnkc123/bge-base-financial-matryoshka
  • hub_strategy: every_save
  • hub_private_repo: None
  • hub_always_push: False
  • gradient_checkpointing: False
  • gradient_checkpointing_kwargs: None
  • include_inputs_for_metrics: False
  • include_for_metrics: []
  • eval_do_concat_batches: True
  • fp16_backend: auto
  • push_to_hub_model_id: None
  • push_to_hub_organization: None
  • mp_parameters:
  • auto_find_batch_size: False
  • full_determinism: False
  • torchdynamo: None
  • ray_scope: last
  • ddp_timeout: 1800
  • torch_compile: False
  • torch_compile_backend: None
  • torch_compile_mode: None
  • include_tokens_per_second: False
  • include_num_input_tokens_seen: False
  • neftune_noise_alpha: None
  • optim_target_modules: None
  • batch_eval_metrics: False
  • eval_on_start: False
  • use_liger_kernel: False
  • eval_use_gather_object: False
  • average_tokens_across_devices: False
  • prompts: None
  • batch_sampler: no_duplicates
  • multi_dataset_batch_sampler: proportional

Training Logs

Epoch Step Training Loss dim_768_cosine_ndcg@10 dim_512_cosine_ndcg@10 dim_256_cosine_ndcg@10 dim_128_cosine_ndcg@10 dim_64_cosine_ndcg@10
0.8122 10 25.483 - - - - -
1.0 13 - 0.7890 0.7887 0.7815 0.7647 0.7280
1.5685 20 9.1323 - - - - -
2.0 26 - 0.7952 0.7982 0.7933 0.7801 0.7477
2.3249 30 6.7535 - - - - -
3.0 39 - 0.8019 0.8048 0.7989 0.7865 0.7547
3.0812 40 6.5646 - - - - -
3.731 48 - 0.8008 0.8044 0.7984 0.7873 0.7546
  • The bold row denotes the saved checkpoint.

Framework Versions

  • Python: 3.12.6
  • Sentence Transformers: 4.1.0
  • Transformers: 4.51.3
  • PyTorch: 2.7.0+cu126
  • Accelerate: 1.6.0
  • Datasets: 3.5.1
  • Tokenizers: 0.21.1

Citation

BibTeX

Sentence Transformers

@inproceedings{reimers-2019-sentence-bert,
    title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
    author = "Reimers, Nils and Gurevych, Iryna",
    booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
    month = "11",
    year = "2019",
    publisher = "Association for Computational Linguistics",
    url = "https://arxiv.org/abs/1908.10084",
}

MatryoshkaLoss

@misc{kusupati2024matryoshka,
    title={Matryoshka Representation Learning},
    author={Aditya Kusupati and Gantavya Bhatt and Aniket Rege and Matthew Wallingford and Aditya Sinha and Vivek Ramanujan and William Howard-Snyder and Kaifeng Chen and Sham Kakade and Prateek Jain and Ali Farhadi},
    year={2024},
    eprint={2205.13147},
    archivePrefix={arXiv},
    primaryClass={cs.LG}
}

MultipleNegativesRankingLoss

@misc{henderson2017efficient,
    title={Efficient Natural Language Response Suggestion for Smart Reply},
    author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
    year={2017},
    eprint={1705.00652},
    archivePrefix={arXiv},
    primaryClass={cs.CL}
}