File size: 33,476 Bytes
f972798 d0b4a80 f972798 d0b4a80 f972798 d0b4a80 f972798 d0b4a80 f972798 d0b4a80 f972798 d0b4a80 f972798 d0b4a80 f972798 d0b4a80 f972798 d0b4a80 f972798 d0b4a80 f972798 d0b4a80 f972798 d0b4a80 f972798 d0b4a80 f972798 d0b4a80 f972798 d0b4a80 f972798 d0b4a80 f972798 d0b4a80 f972798 d0b4a80 f972798 d0b4a80 f972798 d0b4a80 f972798 d0b4a80 f972798 d0b4a80 f972798 d0b4a80 f972798 d0b4a80 f972798 d0b4a80 f972798 d0b4a80 f972798 d0b4a80 f972798 d0b4a80 f972798 d0b4a80 f972798 d0b4a80 f972798 d0b4a80 f972798 d0b4a80 f972798 d0b4a80 f972798 d0b4a80 f972798 d0b4a80 f972798 d0b4a80 f972798 d0b4a80 f972798 d0b4a80 f972798 d0b4a80 f972798 d0b4a80 f972798 d0b4a80 f972798 d0b4a80 f972798 d0b4a80 f972798 d0b4a80 f972798 d0b4a80 f972798 d0b4a80 f972798 d0b4a80 f972798 d0b4a80 f972798 d0b4a80 f972798 d0b4a80 f972798 d0b4a80 f972798 d0b4a80 f972798 d0b4a80 f972798 d0b4a80 f972798 d0b4a80 f972798 d0b4a80 f972798 d0b4a80 f972798 d0b4a80 f972798 d0b4a80 f972798 d0b4a80 f972798 d0b4a80 f972798 d0b4a80 f972798 d0b4a80 f972798 d0b4a80 f972798 d0b4a80 f972798 d0b4a80 f972798 d0b4a80 f972798 d0b4a80 f972798 d0b4a80 f972798 d0b4a80 f972798 d0b4a80 f972798 d0b4a80 f972798 d0b4a80 f972798 d0b4a80 f972798 d0b4a80 f972798 d0b4a80 f972798 d0b4a80 f972798 d0b4a80 f972798 d0b4a80 f972798 d0b4a80 f972798 d0b4a80 f972798 d0b4a80 f972798 d0b4a80 f972798 d0b4a80 f972798 d0b4a80 f972798 d0b4a80 f972798 d0b4a80 f972798 d0b4a80 f972798 d0b4a80 f972798 d0b4a80 f972798 d0b4a80 f972798 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 |
---
language:
- en
license: apache-2.0
tags:
- sentence-transformers
- sentence-similarity
- feature-extraction
- generated_from_trainer
- dataset_size:6300
- loss:MatryoshkaLoss
- loss:MultipleNegativesRankingLoss
base_model: BAAI/bge-base-en-v1.5
widget:
- source_sentence: What are the components of Comcast's domestic distribution revenue?
sentences:
- Cash used in investing activities was $2.3 billion for fiscal 2023, compared to
$2.1 billion for fiscal 2022.
- Domestic distribution revenue primarily includes revenue generated from the distribution
of our television networks operating predominantly in the United States to traditional
and virtual multichannel video providers, and from NBC-affiliated and Telemundo-affiliated
local broadcast television stations. Our revenue from distribution agreements
is generally based on the number of subscribers receiving the programming on our
television networks and a per subscriber fee. Distribution revenue also includes
Peacock subscription fees.
- In January 2023, Alphabet Inc. announced a reduction of its workforce, consequently
recording employee severance and related charges of $2.1 billion for the year.
- source_sentence: What was the noncash pre-tax impairment charge recorded due to
the disposal of Vrio's operations in 2021, and what are the main components contributing
to this amount?
sentences:
- The cash equities rate per contract (per 100 shares) for NYSE increased by 6%,
from $0.045 in 2022 to $0.048 in 2023.
- In the second quarter of 2021, we classified the Vrio disposal group as held-for-sale
and reported the disposal group at fair value less cost to sell, which resulted
in a noncash, pre-tax impairment charge of $4,555, including approximately $2,100
related to accumulated foreign currency translation adjustments and $2,500 related
to property, plant and equipment and intangible assets.
- 'SECRET LAIR - our internet-based storefront where MAGIC: THE GATHERING fans can
purchase exclusive and limited versions of cards.'
- source_sentence: What does the Corporate and Other segment include in its composition?
sentences:
- The segment consists of unallocated corporate expenses and administrative costs
and activities not considered when evaluating segment performance as well as certain
assets benefiting more than one segment. In addition, intersegment transactions
are eliminated within the Corporate and Other segment.
- Net cash provided by (used in) operating activities was recorded at $20,930 million
for the reported year.
- Forward-Looking Statements Certain statements in this report, other than purely
historical information, including estimates, projections, statements relating
to our business plans, objectives and expected operating results, and the assumptions
upon which those statements are based, are “forward-looking statements” within
the meaning of the Private Securities Litigation Reform Act of 1995, Section 27A
of the Securities Act of 1933 and Section 21E of the Securities Exchange Act of
1934.
- source_sentence: What was the purchase price for the repurchase of Mobility preferred
interests by AT&T in 2023?
sentences:
- Net revenue increased $1.5 billion, or 19%, to $9.6 billion in 2023 from $8.1
billion in 2022. On a constant dollar basis, net revenue increased 20%. Comparable
sales increased 13%, or 14% on a constant dollar basis. The increase in net revenue
was primarily due to increased Americas net revenue. China Mainland and Rest of
World net revenue also increased.
- Google Services includes products and services such as ads, Android, Chrome, devices,
Google Maps, Google Play, Search, and YouTube. Google Services generates revenues
primarily from advertising; fees received for consumer subscription-based products
such. as YouTube TV, YouTube Music and Premium, and NFL Sunday Ticket; and the
sale of apps and in-app purchases and devices.
- In April 2023, we also accepted the December 2022 put option notice from the AT&T
pension trust and repurchased the remaining 213 million Mobility preferred interests
for a purchase price, including accrued and unpaid distributions, of $5,414.
- source_sentence: What is the maximum leverage ratio allowed before default under
the company's credit facility?
sentences:
- If the company's leverage ratio exceeds 3.50 to 1, it would be in default of its
revolving credit facility, impairing its ability to borrow under the facility.
- Research and Development Because the industries in which the Company competes
are characterized by rapid technological advances, the Company’s ability to compete
successfully depends heavily upon its ability to ensure a continual and timely
flow of competitive products, services and technologies to the marketplace.
- Visa is focused on extending, enhancing and investing in VisaNet, their proprietary
advanced transaction processing network, to offer a single connection point for
facilitating payment transactions to multiple endpoints through various form factors.
datasets:
- philschmid/finanical-rag-embedding-dataset
pipeline_tag: sentence-similarity
library_name: sentence-transformers
metrics:
- cosine_accuracy@1
- cosine_accuracy@3
- cosine_accuracy@5
- cosine_accuracy@10
- cosine_precision@1
- cosine_precision@3
- cosine_precision@5
- cosine_precision@10
- cosine_recall@1
- cosine_recall@3
- cosine_recall@5
- cosine_recall@10
- cosine_ndcg@10
- cosine_mrr@10
- cosine_map@100
model-index:
- name: BGE base Financial Matryoshka
results:
- task:
type: information-retrieval
name: Information Retrieval
dataset:
name: dim 768
type: dim_768
metrics:
- type: cosine_accuracy@1
value: 0.6771428571428572
name: Cosine Accuracy@1
- type: cosine_accuracy@3
value: 0.8371428571428572
name: Cosine Accuracy@3
- type: cosine_accuracy@5
value: 0.8685714285714285
name: Cosine Accuracy@5
- type: cosine_accuracy@10
value: 0.9185714285714286
name: Cosine Accuracy@10
- type: cosine_precision@1
value: 0.6771428571428572
name: Cosine Precision@1
- type: cosine_precision@3
value: 0.27904761904761904
name: Cosine Precision@3
- type: cosine_precision@5
value: 0.17371428571428568
name: Cosine Precision@5
- type: cosine_precision@10
value: 0.09185714285714283
name: Cosine Precision@10
- type: cosine_recall@1
value: 0.6771428571428572
name: Cosine Recall@1
- type: cosine_recall@3
value: 0.8371428571428572
name: Cosine Recall@3
- type: cosine_recall@5
value: 0.8685714285714285
name: Cosine Recall@5
- type: cosine_recall@10
value: 0.9185714285714286
name: Cosine Recall@10
- type: cosine_ndcg@10
value: 0.800782444183487
name: Cosine Ndcg@10
- type: cosine_mrr@10
value: 0.762721088435374
name: Cosine Mrr@10
- type: cosine_map@100
value: 0.7655884035994069
name: Cosine Map@100
- task:
type: information-retrieval
name: Information Retrieval
dataset:
name: dim 512
type: dim_512
metrics:
- type: cosine_accuracy@1
value: 0.6828571428571428
name: Cosine Accuracy@1
- type: cosine_accuracy@3
value: 0.8371428571428572
name: Cosine Accuracy@3
- type: cosine_accuracy@5
value: 0.8757142857142857
name: Cosine Accuracy@5
- type: cosine_accuracy@10
value: 0.92
name: Cosine Accuracy@10
- type: cosine_precision@1
value: 0.6828571428571428
name: Cosine Precision@1
- type: cosine_precision@3
value: 0.27904761904761904
name: Cosine Precision@3
- type: cosine_precision@5
value: 0.17514285714285713
name: Cosine Precision@5
- type: cosine_precision@10
value: 0.09199999999999998
name: Cosine Precision@10
- type: cosine_recall@1
value: 0.6828571428571428
name: Cosine Recall@1
- type: cosine_recall@3
value: 0.8371428571428572
name: Cosine Recall@3
- type: cosine_recall@5
value: 0.8757142857142857
name: Cosine Recall@5
- type: cosine_recall@10
value: 0.92
name: Cosine Recall@10
- type: cosine_ndcg@10
value: 0.80444342170685
name: Cosine Ndcg@10
- type: cosine_mrr@10
value: 0.7670583900226756
name: Cosine Mrr@10
- type: cosine_map@100
value: 0.7699510134898729
name: Cosine Map@100
- task:
type: information-retrieval
name: Information Retrieval
dataset:
name: dim 256
type: dim_256
metrics:
- type: cosine_accuracy@1
value: 0.6757142857142857
name: Cosine Accuracy@1
- type: cosine_accuracy@3
value: 0.8228571428571428
name: Cosine Accuracy@3
- type: cosine_accuracy@5
value: 0.8642857142857143
name: Cosine Accuracy@5
- type: cosine_accuracy@10
value: 0.9185714285714286
name: Cosine Accuracy@10
- type: cosine_precision@1
value: 0.6757142857142857
name: Cosine Precision@1
- type: cosine_precision@3
value: 0.2742857142857143
name: Cosine Precision@3
- type: cosine_precision@5
value: 0.17285714285714285
name: Cosine Precision@5
- type: cosine_precision@10
value: 0.09185714285714283
name: Cosine Precision@10
- type: cosine_recall@1
value: 0.6757142857142857
name: Cosine Recall@1
- type: cosine_recall@3
value: 0.8228571428571428
name: Cosine Recall@3
- type: cosine_recall@5
value: 0.8642857142857143
name: Cosine Recall@5
- type: cosine_recall@10
value: 0.9185714285714286
name: Cosine Recall@10
- type: cosine_ndcg@10
value: 0.7984105242762846
name: Cosine Ndcg@10
- type: cosine_mrr@10
value: 0.7599024943310656
name: Cosine Mrr@10
- type: cosine_map@100
value: 0.7625291382895937
name: Cosine Map@100
- task:
type: information-retrieval
name: Information Retrieval
dataset:
name: dim 128
type: dim_128
metrics:
- type: cosine_accuracy@1
value: 0.6714285714285714
name: Cosine Accuracy@1
- type: cosine_accuracy@3
value: 0.8114285714285714
name: Cosine Accuracy@3
- type: cosine_accuracy@5
value: 0.8485714285714285
name: Cosine Accuracy@5
- type: cosine_accuracy@10
value: 0.9014285714285715
name: Cosine Accuracy@10
- type: cosine_precision@1
value: 0.6714285714285714
name: Cosine Precision@1
- type: cosine_precision@3
value: 0.2704761904761904
name: Cosine Precision@3
- type: cosine_precision@5
value: 0.16971428571428568
name: Cosine Precision@5
- type: cosine_precision@10
value: 0.09014285714285714
name: Cosine Precision@10
- type: cosine_recall@1
value: 0.6714285714285714
name: Cosine Recall@1
- type: cosine_recall@3
value: 0.8114285714285714
name: Cosine Recall@3
- type: cosine_recall@5
value: 0.8485714285714285
name: Cosine Recall@5
- type: cosine_recall@10
value: 0.9014285714285715
name: Cosine Recall@10
- type: cosine_ndcg@10
value: 0.7872870842648211
name: Cosine Ndcg@10
- type: cosine_mrr@10
value: 0.7507193877551018
name: Cosine Mrr@10
- type: cosine_map@100
value: 0.7542921487122674
name: Cosine Map@100
- task:
type: information-retrieval
name: Information Retrieval
dataset:
name: dim 64
type: dim_64
metrics:
- type: cosine_accuracy@1
value: 0.6242857142857143
name: Cosine Accuracy@1
- type: cosine_accuracy@3
value: 0.7842857142857143
name: Cosine Accuracy@3
- type: cosine_accuracy@5
value: 0.82
name: Cosine Accuracy@5
- type: cosine_accuracy@10
value: 0.8828571428571429
name: Cosine Accuracy@10
- type: cosine_precision@1
value: 0.6242857142857143
name: Cosine Precision@1
- type: cosine_precision@3
value: 0.26142857142857145
name: Cosine Precision@3
- type: cosine_precision@5
value: 0.16399999999999998
name: Cosine Precision@5
- type: cosine_precision@10
value: 0.08828571428571429
name: Cosine Precision@10
- type: cosine_recall@1
value: 0.6242857142857143
name: Cosine Recall@1
- type: cosine_recall@3
value: 0.7842857142857143
name: Cosine Recall@3
- type: cosine_recall@5
value: 0.82
name: Cosine Recall@5
- type: cosine_recall@10
value: 0.8828571428571429
name: Cosine Recall@10
- type: cosine_ndcg@10
value: 0.7546358861091382
name: Cosine Ndcg@10
- type: cosine_mrr@10
value: 0.7135277777777775
name: Cosine Mrr@10
- type: cosine_map@100
value: 0.7174129354945035
name: Cosine Map@100
---
# BGE base Financial Matryoshka
This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [BAAI/bge-base-en-v1.5](https://huggingface.co/BAAI/bge-base-en-v1.5) on the [finanical-rag-embedding-dataset](https://huggingface.co/datasets/philschmid/finanical-rag-embedding-dataset) dataset. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
## Model Details
### Model Description
- **Model Type:** Sentence Transformer
- **Base model:** [BAAI/bge-base-en-v1.5](https://huggingface.co/BAAI/bge-base-en-v1.5) <!-- at revision a5beb1e3e68b9ab74eb54cfd186867f64f240e1a -->
- **Maximum Sequence Length:** 512 tokens
- **Output Dimensionality:** 768 dimensions
- **Similarity Function:** Cosine Similarity
- **Training Dataset:**
- [finanical-rag-embedding-dataset](https://huggingface.co/datasets/philschmid/finanical-rag-embedding-dataset)
- **Language:** en
- **License:** apache-2.0
### Model Sources
- **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
### Full Model Architecture
```
SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': True}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): Normalize()
)
```
## Usage
### Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
```bash
pip install -U sentence-transformers
```
Then you can load this model and run inference.
```python
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("bnkc123/bge-base-financial-matryoshka")
# Run inference
sentences = [
"What is the maximum leverage ratio allowed before default under the company's credit facility?",
"If the company's leverage ratio exceeds 3.50 to 1, it would be in default of its revolving credit facility, impairing its ability to borrow under the facility.",
'Research and Development Because the industries in which the Company competes are characterized by rapid technological advances, the Company’s ability to compete successfully depends heavily upon its ability to ensure a continual and timely flow of competitive products, services and technologies to the marketplace.',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
```
<!--
### Direct Usage (Transformers)
<details><summary>Click to see the direct usage in Transformers</summary>
</details>
-->
<!--
### Downstream Usage (Sentence Transformers)
You can finetune this model on your own dataset.
<details><summary>Click to expand</summary>
</details>
-->
<!--
### Out-of-Scope Use
*List how the model may foreseeably be misused and address what users ought not to do with the model.*
-->
## Evaluation
### Metrics
#### Information Retrieval
* Dataset: `dim_768`
* Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator) with these parameters:
```json
{
"truncate_dim": 768
}
```
| Metric | Value |
|:--------------------|:-----------|
| cosine_accuracy@1 | 0.6771 |
| cosine_accuracy@3 | 0.8371 |
| cosine_accuracy@5 | 0.8686 |
| cosine_accuracy@10 | 0.9186 |
| cosine_precision@1 | 0.6771 |
| cosine_precision@3 | 0.279 |
| cosine_precision@5 | 0.1737 |
| cosine_precision@10 | 0.0919 |
| cosine_recall@1 | 0.6771 |
| cosine_recall@3 | 0.8371 |
| cosine_recall@5 | 0.8686 |
| cosine_recall@10 | 0.9186 |
| **cosine_ndcg@10** | **0.8008** |
| cosine_mrr@10 | 0.7627 |
| cosine_map@100 | 0.7656 |
#### Information Retrieval
* Dataset: `dim_512`
* Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator) with these parameters:
```json
{
"truncate_dim": 512
}
```
| Metric | Value |
|:--------------------|:-----------|
| cosine_accuracy@1 | 0.6829 |
| cosine_accuracy@3 | 0.8371 |
| cosine_accuracy@5 | 0.8757 |
| cosine_accuracy@10 | 0.92 |
| cosine_precision@1 | 0.6829 |
| cosine_precision@3 | 0.279 |
| cosine_precision@5 | 0.1751 |
| cosine_precision@10 | 0.092 |
| cosine_recall@1 | 0.6829 |
| cosine_recall@3 | 0.8371 |
| cosine_recall@5 | 0.8757 |
| cosine_recall@10 | 0.92 |
| **cosine_ndcg@10** | **0.8044** |
| cosine_mrr@10 | 0.7671 |
| cosine_map@100 | 0.77 |
#### Information Retrieval
* Dataset: `dim_256`
* Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator) with these parameters:
```json
{
"truncate_dim": 256
}
```
| Metric | Value |
|:--------------------|:-----------|
| cosine_accuracy@1 | 0.6757 |
| cosine_accuracy@3 | 0.8229 |
| cosine_accuracy@5 | 0.8643 |
| cosine_accuracy@10 | 0.9186 |
| cosine_precision@1 | 0.6757 |
| cosine_precision@3 | 0.2743 |
| cosine_precision@5 | 0.1729 |
| cosine_precision@10 | 0.0919 |
| cosine_recall@1 | 0.6757 |
| cosine_recall@3 | 0.8229 |
| cosine_recall@5 | 0.8643 |
| cosine_recall@10 | 0.9186 |
| **cosine_ndcg@10** | **0.7984** |
| cosine_mrr@10 | 0.7599 |
| cosine_map@100 | 0.7625 |
#### Information Retrieval
* Dataset: `dim_128`
* Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator) with these parameters:
```json
{
"truncate_dim": 128
}
```
| Metric | Value |
|:--------------------|:-----------|
| cosine_accuracy@1 | 0.6714 |
| cosine_accuracy@3 | 0.8114 |
| cosine_accuracy@5 | 0.8486 |
| cosine_accuracy@10 | 0.9014 |
| cosine_precision@1 | 0.6714 |
| cosine_precision@3 | 0.2705 |
| cosine_precision@5 | 0.1697 |
| cosine_precision@10 | 0.0901 |
| cosine_recall@1 | 0.6714 |
| cosine_recall@3 | 0.8114 |
| cosine_recall@5 | 0.8486 |
| cosine_recall@10 | 0.9014 |
| **cosine_ndcg@10** | **0.7873** |
| cosine_mrr@10 | 0.7507 |
| cosine_map@100 | 0.7543 |
#### Information Retrieval
* Dataset: `dim_64`
* Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator) with these parameters:
```json
{
"truncate_dim": 64
}
```
| Metric | Value |
|:--------------------|:-----------|
| cosine_accuracy@1 | 0.6243 |
| cosine_accuracy@3 | 0.7843 |
| cosine_accuracy@5 | 0.82 |
| cosine_accuracy@10 | 0.8829 |
| cosine_precision@1 | 0.6243 |
| cosine_precision@3 | 0.2614 |
| cosine_precision@5 | 0.164 |
| cosine_precision@10 | 0.0883 |
| cosine_recall@1 | 0.6243 |
| cosine_recall@3 | 0.7843 |
| cosine_recall@5 | 0.82 |
| cosine_recall@10 | 0.8829 |
| **cosine_ndcg@10** | **0.7546** |
| cosine_mrr@10 | 0.7135 |
| cosine_map@100 | 0.7174 |
<!--
## Bias, Risks and Limitations
*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
-->
<!--
### Recommendations
*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
-->
## Training Details
### Training Dataset
#### finanical-rag-embedding-dataset
* Dataset: [finanical-rag-embedding-dataset](https://huggingface.co/datasets/philschmid/finanical-rag-embedding-dataset) at [e0b1781](https://huggingface.co/datasets/philschmid/finanical-rag-embedding-dataset/tree/e0b17819cf52d444066c99f4a176f5717e066300)
* Size: 6,300 training samples
* Columns: <code>anchor</code> and <code>positive</code>
* Approximate statistics based on the first 1000 samples:
| | anchor | positive |
|:--------|:---------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------|
| type | string | string |
| details | <ul><li>min: 7 tokens</li><li>mean: 20.5 tokens</li><li>max: 43 tokens</li></ul> | <ul><li>min: 9 tokens</li><li>mean: 46.09 tokens</li><li>max: 512 tokens</li></ul> |
* Samples:
| anchor | positive |
|:----------------------------------------------------------------------------------------------------------------------------------------------------------|:-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <code>What was the amount of premiums written by Berkshire Hathaway's Insurance Underwriting in 2023, and how did it compare to the previous year?</code> | <code>Premiums written increased $3.5 billion (24.1%) in 2023 compared to 2022. The increase was primarily due to RSUI and CapSpecialty ($2.1 billion), as well as comparative increases from BHSI and BH Direct, and to a lesser extent the other businesses. Premiums written | $ | 18,142 | | | | $ | 14,619 |</code> |
| <code>What types of transportation equipment does XTRA Corporation manage in its fleet?</code> | <code>XTRA manages a diverse fleet of approximately 90,000 units located at 47 facilities throughout the U.S. The fleet includes over-the-road and storage trailers, chassis, temperature-controlled vans and flatbed trailers.</code> |
| <code>What seasonal trends affect the company's sales volumes?</code> | <code>Sales volumes for the company are highest in the second fiscal quarter due to seasonal influences, particularly during the spring season in the regions it serves.</code> |
* Loss: [<code>MatryoshkaLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#matryoshkaloss) with these parameters:
```json
{
"loss": "MultipleNegativesRankingLoss",
"matryoshka_dims": [
768,
512,
256,
128,
64
],
"matryoshka_weights": [
1,
1,
1,
1,
1
],
"n_dims_per_step": -1
}
```
### Training Hyperparameters
#### Non-Default Hyperparameters
- `eval_strategy`: epoch
- `per_device_train_batch_size`: 32
- `per_device_eval_batch_size`: 16
- `gradient_accumulation_steps`: 16
- `learning_rate`: 2e-05
- `num_train_epochs`: 4
- `lr_scheduler_type`: cosine
- `warmup_ratio`: 0.1
- `bf16`: True
- `tf32`: True
- `load_best_model_at_end`: True
- `optim`: adamw_torch_fused
- `push_to_hub`: True
- `hub_model_id`: bnkc123/bge-base-financial-matryoshka
- `batch_sampler`: no_duplicates
#### All Hyperparameters
<details><summary>Click to expand</summary>
- `overwrite_output_dir`: False
- `do_predict`: False
- `eval_strategy`: epoch
- `prediction_loss_only`: True
- `per_device_train_batch_size`: 32
- `per_device_eval_batch_size`: 16
- `per_gpu_train_batch_size`: None
- `per_gpu_eval_batch_size`: None
- `gradient_accumulation_steps`: 16
- `eval_accumulation_steps`: None
- `torch_empty_cache_steps`: None
- `learning_rate`: 2e-05
- `weight_decay`: 0.0
- `adam_beta1`: 0.9
- `adam_beta2`: 0.999
- `adam_epsilon`: 1e-08
- `max_grad_norm`: 1.0
- `num_train_epochs`: 4
- `max_steps`: -1
- `lr_scheduler_type`: cosine
- `lr_scheduler_kwargs`: {}
- `warmup_ratio`: 0.1
- `warmup_steps`: 0
- `log_level`: passive
- `log_level_replica`: warning
- `log_on_each_node`: True
- `logging_nan_inf_filter`: True
- `save_safetensors`: True
- `save_on_each_node`: False
- `save_only_model`: False
- `restore_callback_states_from_checkpoint`: False
- `no_cuda`: False
- `use_cpu`: False
- `use_mps_device`: False
- `seed`: 42
- `data_seed`: None
- `jit_mode_eval`: False
- `use_ipex`: False
- `bf16`: True
- `fp16`: False
- `fp16_opt_level`: O1
- `half_precision_backend`: auto
- `bf16_full_eval`: False
- `fp16_full_eval`: False
- `tf32`: True
- `local_rank`: 0
- `ddp_backend`: None
- `tpu_num_cores`: None
- `tpu_metrics_debug`: False
- `debug`: []
- `dataloader_drop_last`: False
- `dataloader_num_workers`: 0
- `dataloader_prefetch_factor`: None
- `past_index`: -1
- `disable_tqdm`: False
- `remove_unused_columns`: True
- `label_names`: None
- `load_best_model_at_end`: True
- `ignore_data_skip`: False
- `fsdp`: []
- `fsdp_min_num_params`: 0
- `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
- `tp_size`: 0
- `fsdp_transformer_layer_cls_to_wrap`: None
- `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
- `deepspeed`: None
- `label_smoothing_factor`: 0.0
- `optim`: adamw_torch_fused
- `optim_args`: None
- `adafactor`: False
- `group_by_length`: False
- `length_column_name`: length
- `ddp_find_unused_parameters`: None
- `ddp_bucket_cap_mb`: None
- `ddp_broadcast_buffers`: False
- `dataloader_pin_memory`: True
- `dataloader_persistent_workers`: False
- `skip_memory_metrics`: True
- `use_legacy_prediction_loop`: False
- `push_to_hub`: True
- `resume_from_checkpoint`: None
- `hub_model_id`: bnkc123/bge-base-financial-matryoshka
- `hub_strategy`: every_save
- `hub_private_repo`: None
- `hub_always_push`: False
- `gradient_checkpointing`: False
- `gradient_checkpointing_kwargs`: None
- `include_inputs_for_metrics`: False
- `include_for_metrics`: []
- `eval_do_concat_batches`: True
- `fp16_backend`: auto
- `push_to_hub_model_id`: None
- `push_to_hub_organization`: None
- `mp_parameters`:
- `auto_find_batch_size`: False
- `full_determinism`: False
- `torchdynamo`: None
- `ray_scope`: last
- `ddp_timeout`: 1800
- `torch_compile`: False
- `torch_compile_backend`: None
- `torch_compile_mode`: None
- `include_tokens_per_second`: False
- `include_num_input_tokens_seen`: False
- `neftune_noise_alpha`: None
- `optim_target_modules`: None
- `batch_eval_metrics`: False
- `eval_on_start`: False
- `use_liger_kernel`: False
- `eval_use_gather_object`: False
- `average_tokens_across_devices`: False
- `prompts`: None
- `batch_sampler`: no_duplicates
- `multi_dataset_batch_sampler`: proportional
</details>
### Training Logs
| Epoch | Step | Training Loss | dim_768_cosine_ndcg@10 | dim_512_cosine_ndcg@10 | dim_256_cosine_ndcg@10 | dim_128_cosine_ndcg@10 | dim_64_cosine_ndcg@10 |
|:---------:|:------:|:-------------:|:----------------------:|:----------------------:|:----------------------:|:----------------------:|:---------------------:|
| 0.8122 | 10 | 25.483 | - | - | - | - | - |
| 1.0 | 13 | - | 0.7890 | 0.7887 | 0.7815 | 0.7647 | 0.7280 |
| 1.5685 | 20 | 9.1323 | - | - | - | - | - |
| 2.0 | 26 | - | 0.7952 | 0.7982 | 0.7933 | 0.7801 | 0.7477 |
| 2.3249 | 30 | 6.7535 | - | - | - | - | - |
| 3.0 | 39 | - | 0.8019 | 0.8048 | 0.7989 | 0.7865 | 0.7547 |
| 3.0812 | 40 | 6.5646 | - | - | - | - | - |
| **3.731** | **48** | **-** | **0.8008** | **0.8044** | **0.7984** | **0.7873** | **0.7546** |
* The bold row denotes the saved checkpoint.
### Framework Versions
- Python: 3.12.6
- Sentence Transformers: 4.1.0
- Transformers: 4.51.3
- PyTorch: 2.7.0+cu126
- Accelerate: 1.6.0
- Datasets: 3.5.1
- Tokenizers: 0.21.1
## Citation
### BibTeX
#### Sentence Transformers
```bibtex
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
```
#### MatryoshkaLoss
```bibtex
@misc{kusupati2024matryoshka,
title={Matryoshka Representation Learning},
author={Aditya Kusupati and Gantavya Bhatt and Aniket Rege and Matthew Wallingford and Aditya Sinha and Vivek Ramanujan and William Howard-Snyder and Kaifeng Chen and Sham Kakade and Prateek Jain and Ali Farhadi},
year={2024},
eprint={2205.13147},
archivePrefix={arXiv},
primaryClass={cs.LG}
}
```
#### MultipleNegativesRankingLoss
```bibtex
@misc{henderson2017efficient,
title={Efficient Natural Language Response Suggestion for Smart Reply},
author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
year={2017},
eprint={1705.00652},
archivePrefix={arXiv},
primaryClass={cs.CL}
}
```
<!--
## Glossary
*Clearly define terms in order to be accessible across audiences.*
-->
<!--
## Model Card Authors
*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
-->
<!--
## Model Card Contact
*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
--> |