File size: 33,476 Bytes
f972798
 
 
 
 
 
 
 
 
 
 
 
 
 
d0b4a80
f972798
d0b4a80
 
 
 
 
 
 
 
 
 
 
 
 
 
f972798
d0b4a80
 
 
 
 
 
 
 
 
 
f972798
d0b4a80
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f972798
d0b4a80
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f972798
d0b4a80
 
 
 
 
 
 
 
 
f972798
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d0b4a80
f972798
 
d0b4a80
f972798
 
 
 
 
d0b4a80
f972798
 
d0b4a80
f972798
 
d0b4a80
f972798
 
d0b4a80
f972798
 
d0b4a80
f972798
 
d0b4a80
f972798
 
d0b4a80
f972798
 
 
 
 
d0b4a80
f972798
 
d0b4a80
f972798
 
d0b4a80
f972798
 
d0b4a80
f972798
 
 
 
 
 
 
 
 
d0b4a80
f972798
 
d0b4a80
f972798
 
d0b4a80
f972798
 
d0b4a80
f972798
 
d0b4a80
f972798
 
d0b4a80
f972798
 
d0b4a80
f972798
 
d0b4a80
f972798
 
d0b4a80
f972798
 
d0b4a80
f972798
 
d0b4a80
f972798
 
d0b4a80
f972798
 
d0b4a80
f972798
 
d0b4a80
f972798
 
d0b4a80
f972798
 
 
 
 
 
 
 
 
d0b4a80
f972798
 
d0b4a80
f972798
 
d0b4a80
f972798
 
d0b4a80
f972798
 
d0b4a80
f972798
 
d0b4a80
f972798
 
d0b4a80
f972798
 
d0b4a80
f972798
 
d0b4a80
f972798
 
d0b4a80
f972798
 
d0b4a80
f972798
 
d0b4a80
f972798
 
d0b4a80
f972798
 
d0b4a80
f972798
 
d0b4a80
f972798
 
 
 
 
 
 
 
 
d0b4a80
f972798
 
d0b4a80
f972798
 
d0b4a80
f972798
 
d0b4a80
f972798
 
d0b4a80
f972798
 
d0b4a80
f972798
 
d0b4a80
f972798
 
d0b4a80
f972798
 
d0b4a80
f972798
 
d0b4a80
f972798
 
d0b4a80
f972798
 
d0b4a80
f972798
 
d0b4a80
f972798
 
d0b4a80
f972798
 
d0b4a80
f972798
 
 
 
 
 
 
 
 
d0b4a80
f972798
 
d0b4a80
f972798
 
d0b4a80
f972798
 
d0b4a80
f972798
 
d0b4a80
f972798
 
d0b4a80
f972798
 
d0b4a80
f972798
 
d0b4a80
f972798
 
d0b4a80
f972798
 
d0b4a80
f972798
 
d0b4a80
f972798
 
d0b4a80
f972798
 
d0b4a80
f972798
 
d0b4a80
f972798
 
d0b4a80
f972798
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d0b4a80
 
 
f972798
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d0b4a80
 
f972798
d0b4a80
 
 
f972798
d0b4a80
 
 
f972798
d0b4a80
 
 
 
f972798
 
 
 
 
 
 
 
 
 
 
 
 
d0b4a80
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f972798
 
 
 
 
 
 
 
 
 
 
 
 
d0b4a80
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f972798
 
 
 
 
 
 
 
 
 
 
 
 
d0b4a80
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f972798
 
 
 
 
 
 
 
 
 
 
 
 
d0b4a80
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f972798
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d0b4a80
 
 
 
f972798
d0b4a80
 
 
 
 
f972798
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d0b4a80
 
 
 
 
 
 
 
f972798
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
---
language:
- en
license: apache-2.0
tags:
- sentence-transformers
- sentence-similarity
- feature-extraction
- generated_from_trainer
- dataset_size:6300
- loss:MatryoshkaLoss
- loss:MultipleNegativesRankingLoss
base_model: BAAI/bge-base-en-v1.5
widget:
- source_sentence: What are the components of Comcast's domestic distribution revenue?
  sentences:
  - Cash used in investing activities was $2.3 billion for fiscal 2023, compared to
    $2.1 billion for fiscal 2022.
  - Domestic distribution revenue primarily includes revenue generated from the distribution
    of our television networks operating predominantly in the United States to traditional
    and virtual multichannel video providers, and from NBC-affiliated and Telemundo-affiliated
    local broadcast television stations. Our revenue from distribution agreements
    is generally based on the number of subscribers receiving the programming on our
    television networks and a per subscriber fee. Distribution revenue also includes
    Peacock subscription fees.
  - In January 2023, Alphabet Inc. announced a reduction of its workforce, consequently
    recording employee severance and related charges of $2.1 billion for the year.
- source_sentence: What was the noncash pre-tax impairment charge recorded due to
    the disposal of Vrio's operations in 2021, and what are the main components contributing
    to this amount?
  sentences:
  - The cash equities rate per contract (per 100 shares) for NYSE increased by 6%,
    from $0.045 in 2022 to $0.048 in 2023.
  - In the second quarter of 2021, we classified the Vrio disposal group as held-for-sale
    and reported the disposal group at fair value less cost to sell, which resulted
    in a noncash, pre-tax impairment charge of $4,555, including approximately $2,100
    related to accumulated foreign currency translation adjustments and $2,500 related
    to property, plant and equipment and intangible assets.
  - 'SECRET LAIR - our internet-based storefront where MAGIC: THE GATHERING fans can
    purchase exclusive and limited versions of cards.'
- source_sentence: What does the Corporate and Other segment include in its composition?
  sentences:
  - The segment consists of unallocated corporate expenses and administrative costs
    and activities not considered when evaluating segment performance as well as certain
    assets benefiting more than one segment. In addition, intersegment transactions
    are eliminated within the Corporate and Other segment.
  - Net cash provided by (used in) operating activities was recorded at $20,930 million
    for the reported year.
  - Forward-Looking Statements Certain statements in this report, other than purely
    historical information, including estimates, projections, statements relating
    to our business plans, objectives and expected operating results, and the assumptions
    upon which those statements are based, are “forward-looking statements” within
    the meaning of the Private Securities Litigation Reform Act of 1995, Section 27A
    of the Securities Act of 1933 and Section 21E of the Securities Exchange Act of
    1934.
- source_sentence: What was the purchase price for the repurchase of Mobility preferred
    interests by AT&T in 2023?
  sentences:
  - Net revenue increased $1.5 billion, or 19%, to $9.6 billion in 2023 from $8.1
    billion in 2022. On a constant dollar basis, net revenue increased 20%. Comparable
    sales increased 13%, or 14% on a constant dollar basis. The increase in net revenue
    was primarily due to increased Americas net revenue. China Mainland and Rest of
    World net revenue also increased.
  - Google Services includes products and services such as ads, Android, Chrome, devices,
    Google Maps, Google Play, Search, and YouTube. Google Services generates revenues
    primarily from advertising; fees received for consumer subscription-based products
    such. as YouTube TV, YouTube Music and Premium, and NFL Sunday Ticket; and the
    sale of apps and in-app purchases and devices.
  - In April 2023, we also accepted the December 2022 put option notice from the AT&T
    pension trust and repurchased the remaining 213 million Mobility preferred interests
    for a purchase price, including accrued and unpaid distributions, of $5,414.
- source_sentence: What is the maximum leverage ratio allowed before default under
    the company's credit facility?
  sentences:
  - If the company's leverage ratio exceeds 3.50 to 1, it would be in default of its
    revolving credit facility, impairing its ability to borrow under the facility.
  - Research and Development Because the industries in which the Company competes
    are characterized by rapid technological advances, the Company’s ability to compete
    successfully depends heavily upon its ability to ensure a continual and timely
    flow of competitive products, services and technologies to the marketplace.
  - Visa is focused on extending, enhancing and investing in VisaNet, their proprietary
    advanced transaction processing network, to offer a single connection point for
    facilitating payment transactions to multiple endpoints through various form factors.
datasets:
- philschmid/finanical-rag-embedding-dataset
pipeline_tag: sentence-similarity
library_name: sentence-transformers
metrics:
- cosine_accuracy@1
- cosine_accuracy@3
- cosine_accuracy@5
- cosine_accuracy@10
- cosine_precision@1
- cosine_precision@3
- cosine_precision@5
- cosine_precision@10
- cosine_recall@1
- cosine_recall@3
- cosine_recall@5
- cosine_recall@10
- cosine_ndcg@10
- cosine_mrr@10
- cosine_map@100
model-index:
- name: BGE base Financial Matryoshka
  results:
  - task:
      type: information-retrieval
      name: Information Retrieval
    dataset:
      name: dim 768
      type: dim_768
    metrics:
    - type: cosine_accuracy@1
      value: 0.6771428571428572
      name: Cosine Accuracy@1
    - type: cosine_accuracy@3
      value: 0.8371428571428572
      name: Cosine Accuracy@3
    - type: cosine_accuracy@5
      value: 0.8685714285714285
      name: Cosine Accuracy@5
    - type: cosine_accuracy@10
      value: 0.9185714285714286
      name: Cosine Accuracy@10
    - type: cosine_precision@1
      value: 0.6771428571428572
      name: Cosine Precision@1
    - type: cosine_precision@3
      value: 0.27904761904761904
      name: Cosine Precision@3
    - type: cosine_precision@5
      value: 0.17371428571428568
      name: Cosine Precision@5
    - type: cosine_precision@10
      value: 0.09185714285714283
      name: Cosine Precision@10
    - type: cosine_recall@1
      value: 0.6771428571428572
      name: Cosine Recall@1
    - type: cosine_recall@3
      value: 0.8371428571428572
      name: Cosine Recall@3
    - type: cosine_recall@5
      value: 0.8685714285714285
      name: Cosine Recall@5
    - type: cosine_recall@10
      value: 0.9185714285714286
      name: Cosine Recall@10
    - type: cosine_ndcg@10
      value: 0.800782444183487
      name: Cosine Ndcg@10
    - type: cosine_mrr@10
      value: 0.762721088435374
      name: Cosine Mrr@10
    - type: cosine_map@100
      value: 0.7655884035994069
      name: Cosine Map@100
  - task:
      type: information-retrieval
      name: Information Retrieval
    dataset:
      name: dim 512
      type: dim_512
    metrics:
    - type: cosine_accuracy@1
      value: 0.6828571428571428
      name: Cosine Accuracy@1
    - type: cosine_accuracy@3
      value: 0.8371428571428572
      name: Cosine Accuracy@3
    - type: cosine_accuracy@5
      value: 0.8757142857142857
      name: Cosine Accuracy@5
    - type: cosine_accuracy@10
      value: 0.92
      name: Cosine Accuracy@10
    - type: cosine_precision@1
      value: 0.6828571428571428
      name: Cosine Precision@1
    - type: cosine_precision@3
      value: 0.27904761904761904
      name: Cosine Precision@3
    - type: cosine_precision@5
      value: 0.17514285714285713
      name: Cosine Precision@5
    - type: cosine_precision@10
      value: 0.09199999999999998
      name: Cosine Precision@10
    - type: cosine_recall@1
      value: 0.6828571428571428
      name: Cosine Recall@1
    - type: cosine_recall@3
      value: 0.8371428571428572
      name: Cosine Recall@3
    - type: cosine_recall@5
      value: 0.8757142857142857
      name: Cosine Recall@5
    - type: cosine_recall@10
      value: 0.92
      name: Cosine Recall@10
    - type: cosine_ndcg@10
      value: 0.80444342170685
      name: Cosine Ndcg@10
    - type: cosine_mrr@10
      value: 0.7670583900226756
      name: Cosine Mrr@10
    - type: cosine_map@100
      value: 0.7699510134898729
      name: Cosine Map@100
  - task:
      type: information-retrieval
      name: Information Retrieval
    dataset:
      name: dim 256
      type: dim_256
    metrics:
    - type: cosine_accuracy@1
      value: 0.6757142857142857
      name: Cosine Accuracy@1
    - type: cosine_accuracy@3
      value: 0.8228571428571428
      name: Cosine Accuracy@3
    - type: cosine_accuracy@5
      value: 0.8642857142857143
      name: Cosine Accuracy@5
    - type: cosine_accuracy@10
      value: 0.9185714285714286
      name: Cosine Accuracy@10
    - type: cosine_precision@1
      value: 0.6757142857142857
      name: Cosine Precision@1
    - type: cosine_precision@3
      value: 0.2742857142857143
      name: Cosine Precision@3
    - type: cosine_precision@5
      value: 0.17285714285714285
      name: Cosine Precision@5
    - type: cosine_precision@10
      value: 0.09185714285714283
      name: Cosine Precision@10
    - type: cosine_recall@1
      value: 0.6757142857142857
      name: Cosine Recall@1
    - type: cosine_recall@3
      value: 0.8228571428571428
      name: Cosine Recall@3
    - type: cosine_recall@5
      value: 0.8642857142857143
      name: Cosine Recall@5
    - type: cosine_recall@10
      value: 0.9185714285714286
      name: Cosine Recall@10
    - type: cosine_ndcg@10
      value: 0.7984105242762846
      name: Cosine Ndcg@10
    - type: cosine_mrr@10
      value: 0.7599024943310656
      name: Cosine Mrr@10
    - type: cosine_map@100
      value: 0.7625291382895937
      name: Cosine Map@100
  - task:
      type: information-retrieval
      name: Information Retrieval
    dataset:
      name: dim 128
      type: dim_128
    metrics:
    - type: cosine_accuracy@1
      value: 0.6714285714285714
      name: Cosine Accuracy@1
    - type: cosine_accuracy@3
      value: 0.8114285714285714
      name: Cosine Accuracy@3
    - type: cosine_accuracy@5
      value: 0.8485714285714285
      name: Cosine Accuracy@5
    - type: cosine_accuracy@10
      value: 0.9014285714285715
      name: Cosine Accuracy@10
    - type: cosine_precision@1
      value: 0.6714285714285714
      name: Cosine Precision@1
    - type: cosine_precision@3
      value: 0.2704761904761904
      name: Cosine Precision@3
    - type: cosine_precision@5
      value: 0.16971428571428568
      name: Cosine Precision@5
    - type: cosine_precision@10
      value: 0.09014285714285714
      name: Cosine Precision@10
    - type: cosine_recall@1
      value: 0.6714285714285714
      name: Cosine Recall@1
    - type: cosine_recall@3
      value: 0.8114285714285714
      name: Cosine Recall@3
    - type: cosine_recall@5
      value: 0.8485714285714285
      name: Cosine Recall@5
    - type: cosine_recall@10
      value: 0.9014285714285715
      name: Cosine Recall@10
    - type: cosine_ndcg@10
      value: 0.7872870842648211
      name: Cosine Ndcg@10
    - type: cosine_mrr@10
      value: 0.7507193877551018
      name: Cosine Mrr@10
    - type: cosine_map@100
      value: 0.7542921487122674
      name: Cosine Map@100
  - task:
      type: information-retrieval
      name: Information Retrieval
    dataset:
      name: dim 64
      type: dim_64
    metrics:
    - type: cosine_accuracy@1
      value: 0.6242857142857143
      name: Cosine Accuracy@1
    - type: cosine_accuracy@3
      value: 0.7842857142857143
      name: Cosine Accuracy@3
    - type: cosine_accuracy@5
      value: 0.82
      name: Cosine Accuracy@5
    - type: cosine_accuracy@10
      value: 0.8828571428571429
      name: Cosine Accuracy@10
    - type: cosine_precision@1
      value: 0.6242857142857143
      name: Cosine Precision@1
    - type: cosine_precision@3
      value: 0.26142857142857145
      name: Cosine Precision@3
    - type: cosine_precision@5
      value: 0.16399999999999998
      name: Cosine Precision@5
    - type: cosine_precision@10
      value: 0.08828571428571429
      name: Cosine Precision@10
    - type: cosine_recall@1
      value: 0.6242857142857143
      name: Cosine Recall@1
    - type: cosine_recall@3
      value: 0.7842857142857143
      name: Cosine Recall@3
    - type: cosine_recall@5
      value: 0.82
      name: Cosine Recall@5
    - type: cosine_recall@10
      value: 0.8828571428571429
      name: Cosine Recall@10
    - type: cosine_ndcg@10
      value: 0.7546358861091382
      name: Cosine Ndcg@10
    - type: cosine_mrr@10
      value: 0.7135277777777775
      name: Cosine Mrr@10
    - type: cosine_map@100
      value: 0.7174129354945035
      name: Cosine Map@100
---

# BGE base Financial Matryoshka

This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [BAAI/bge-base-en-v1.5](https://huggingface.co/BAAI/bge-base-en-v1.5) on the [finanical-rag-embedding-dataset](https://huggingface.co/datasets/philschmid/finanical-rag-embedding-dataset) dataset. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.

## Model Details

### Model Description
- **Model Type:** Sentence Transformer
- **Base model:** [BAAI/bge-base-en-v1.5](https://huggingface.co/BAAI/bge-base-en-v1.5) <!-- at revision a5beb1e3e68b9ab74eb54cfd186867f64f240e1a -->
- **Maximum Sequence Length:** 512 tokens
- **Output Dimensionality:** 768 dimensions
- **Similarity Function:** Cosine Similarity
- **Training Dataset:**
    - [finanical-rag-embedding-dataset](https://huggingface.co/datasets/philschmid/finanical-rag-embedding-dataset)
- **Language:** en
- **License:** apache-2.0

### Model Sources

- **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)

### Full Model Architecture

```
SentenceTransformer(
  (0): Transformer({'max_seq_length': 512, 'do_lower_case': True}) with Transformer model: BertModel 
  (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
  (2): Normalize()
)
```

## Usage

### Direct Usage (Sentence Transformers)

First install the Sentence Transformers library:

```bash
pip install -U sentence-transformers
```

Then you can load this model and run inference.
```python
from sentence_transformers import SentenceTransformer

# Download from the 🤗 Hub
model = SentenceTransformer("bnkc123/bge-base-financial-matryoshka")
# Run inference
sentences = [
    "What is the maximum leverage ratio allowed before default under the company's credit facility?",
    "If the company's leverage ratio exceeds 3.50 to 1, it would be in default of its revolving credit facility, impairing its ability to borrow under the facility.",
    'Research and Development Because the industries in which the Company competes are characterized by rapid technological advances, the Company’s ability to compete successfully depends heavily upon its ability to ensure a continual and timely flow of competitive products, services and technologies to the marketplace.',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]

# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
```

<!--
### Direct Usage (Transformers)

<details><summary>Click to see the direct usage in Transformers</summary>

</details>
-->

<!--
### Downstream Usage (Sentence Transformers)

You can finetune this model on your own dataset.

<details><summary>Click to expand</summary>

</details>
-->

<!--
### Out-of-Scope Use

*List how the model may foreseeably be misused and address what users ought not to do with the model.*
-->

## Evaluation

### Metrics

#### Information Retrieval

* Dataset: `dim_768`
* Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator) with these parameters:
  ```json
  {
      "truncate_dim": 768
  }
  ```

| Metric              | Value      |
|:--------------------|:-----------|
| cosine_accuracy@1   | 0.6771     |
| cosine_accuracy@3   | 0.8371     |
| cosine_accuracy@5   | 0.8686     |
| cosine_accuracy@10  | 0.9186     |
| cosine_precision@1  | 0.6771     |
| cosine_precision@3  | 0.279      |
| cosine_precision@5  | 0.1737     |
| cosine_precision@10 | 0.0919     |
| cosine_recall@1     | 0.6771     |
| cosine_recall@3     | 0.8371     |
| cosine_recall@5     | 0.8686     |
| cosine_recall@10    | 0.9186     |
| **cosine_ndcg@10**  | **0.8008** |
| cosine_mrr@10       | 0.7627     |
| cosine_map@100      | 0.7656     |

#### Information Retrieval

* Dataset: `dim_512`
* Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator) with these parameters:
  ```json
  {
      "truncate_dim": 512
  }
  ```

| Metric              | Value      |
|:--------------------|:-----------|
| cosine_accuracy@1   | 0.6829     |
| cosine_accuracy@3   | 0.8371     |
| cosine_accuracy@5   | 0.8757     |
| cosine_accuracy@10  | 0.92       |
| cosine_precision@1  | 0.6829     |
| cosine_precision@3  | 0.279      |
| cosine_precision@5  | 0.1751     |
| cosine_precision@10 | 0.092      |
| cosine_recall@1     | 0.6829     |
| cosine_recall@3     | 0.8371     |
| cosine_recall@5     | 0.8757     |
| cosine_recall@10    | 0.92       |
| **cosine_ndcg@10**  | **0.8044** |
| cosine_mrr@10       | 0.7671     |
| cosine_map@100      | 0.77       |

#### Information Retrieval

* Dataset: `dim_256`
* Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator) with these parameters:
  ```json
  {
      "truncate_dim": 256
  }
  ```

| Metric              | Value      |
|:--------------------|:-----------|
| cosine_accuracy@1   | 0.6757     |
| cosine_accuracy@3   | 0.8229     |
| cosine_accuracy@5   | 0.8643     |
| cosine_accuracy@10  | 0.9186     |
| cosine_precision@1  | 0.6757     |
| cosine_precision@3  | 0.2743     |
| cosine_precision@5  | 0.1729     |
| cosine_precision@10 | 0.0919     |
| cosine_recall@1     | 0.6757     |
| cosine_recall@3     | 0.8229     |
| cosine_recall@5     | 0.8643     |
| cosine_recall@10    | 0.9186     |
| **cosine_ndcg@10**  | **0.7984** |
| cosine_mrr@10       | 0.7599     |
| cosine_map@100      | 0.7625     |

#### Information Retrieval

* Dataset: `dim_128`
* Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator) with these parameters:
  ```json
  {
      "truncate_dim": 128
  }
  ```

| Metric              | Value      |
|:--------------------|:-----------|
| cosine_accuracy@1   | 0.6714     |
| cosine_accuracy@3   | 0.8114     |
| cosine_accuracy@5   | 0.8486     |
| cosine_accuracy@10  | 0.9014     |
| cosine_precision@1  | 0.6714     |
| cosine_precision@3  | 0.2705     |
| cosine_precision@5  | 0.1697     |
| cosine_precision@10 | 0.0901     |
| cosine_recall@1     | 0.6714     |
| cosine_recall@3     | 0.8114     |
| cosine_recall@5     | 0.8486     |
| cosine_recall@10    | 0.9014     |
| **cosine_ndcg@10**  | **0.7873** |
| cosine_mrr@10       | 0.7507     |
| cosine_map@100      | 0.7543     |

#### Information Retrieval

* Dataset: `dim_64`
* Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator) with these parameters:
  ```json
  {
      "truncate_dim": 64
  }
  ```

| Metric              | Value      |
|:--------------------|:-----------|
| cosine_accuracy@1   | 0.6243     |
| cosine_accuracy@3   | 0.7843     |
| cosine_accuracy@5   | 0.82       |
| cosine_accuracy@10  | 0.8829     |
| cosine_precision@1  | 0.6243     |
| cosine_precision@3  | 0.2614     |
| cosine_precision@5  | 0.164      |
| cosine_precision@10 | 0.0883     |
| cosine_recall@1     | 0.6243     |
| cosine_recall@3     | 0.7843     |
| cosine_recall@5     | 0.82       |
| cosine_recall@10    | 0.8829     |
| **cosine_ndcg@10**  | **0.7546** |
| cosine_mrr@10       | 0.7135     |
| cosine_map@100      | 0.7174     |

<!--
## Bias, Risks and Limitations

*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
-->

<!--
### Recommendations

*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
-->

## Training Details

### Training Dataset

#### finanical-rag-embedding-dataset

* Dataset: [finanical-rag-embedding-dataset](https://huggingface.co/datasets/philschmid/finanical-rag-embedding-dataset) at [e0b1781](https://huggingface.co/datasets/philschmid/finanical-rag-embedding-dataset/tree/e0b17819cf52d444066c99f4a176f5717e066300)
* Size: 6,300 training samples
* Columns: <code>anchor</code> and <code>positive</code>
* Approximate statistics based on the first 1000 samples:
  |         | anchor                                                                           | positive                                                                           |
  |:--------|:---------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------|
  | type    | string                                                                           | string                                                                             |
  | details | <ul><li>min: 7 tokens</li><li>mean: 20.5 tokens</li><li>max: 43 tokens</li></ul> | <ul><li>min: 9 tokens</li><li>mean: 46.09 tokens</li><li>max: 512 tokens</li></ul> |
* Samples:
  | anchor                                                                                                                                                    | positive                                                                                                                                                                                                                                                                                                                 |
  |:----------------------------------------------------------------------------------------------------------------------------------------------------------|:-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
  | <code>What was the amount of premiums written by Berkshire Hathaway's Insurance Underwriting in 2023, and how did it compare to the previous year?</code> | <code>Premiums written increased $3.5 billion (24.1%) in 2023 compared to 2022. The increase was primarily due to RSUI and CapSpecialty ($2.1 billion), as well as comparative increases from BHSI and BH Direct, and to a lesser extent the other businesses. Premiums written | $ | 18,142 | | | | $ | 14,619 |</code> |
  | <code>What types of transportation equipment does XTRA Corporation manage in its fleet?</code>                                                            | <code>XTRA manages a diverse fleet of approximately 90,000 units located at 47 facilities throughout the U.S. The fleet includes over-the-road and storage trailers, chassis, temperature-controlled vans and flatbed trailers.</code>                                                                                   |
  | <code>What seasonal trends affect the company's sales volumes?</code>                                                                                     | <code>Sales volumes for the company are highest in the second fiscal quarter due to seasonal influences, particularly during the spring season in the regions it serves.</code>                                                                                                                                          |
* Loss: [<code>MatryoshkaLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#matryoshkaloss) with these parameters:
  ```json
  {
      "loss": "MultipleNegativesRankingLoss",
      "matryoshka_dims": [
          768,
          512,
          256,
          128,
          64
      ],
      "matryoshka_weights": [
          1,
          1,
          1,
          1,
          1
      ],
      "n_dims_per_step": -1
  }
  ```

### Training Hyperparameters
#### Non-Default Hyperparameters

- `eval_strategy`: epoch
- `per_device_train_batch_size`: 32
- `per_device_eval_batch_size`: 16
- `gradient_accumulation_steps`: 16
- `learning_rate`: 2e-05
- `num_train_epochs`: 4
- `lr_scheduler_type`: cosine
- `warmup_ratio`: 0.1
- `bf16`: True
- `tf32`: True
- `load_best_model_at_end`: True
- `optim`: adamw_torch_fused
- `push_to_hub`: True
- `hub_model_id`: bnkc123/bge-base-financial-matryoshka
- `batch_sampler`: no_duplicates

#### All Hyperparameters
<details><summary>Click to expand</summary>

- `overwrite_output_dir`: False
- `do_predict`: False
- `eval_strategy`: epoch
- `prediction_loss_only`: True
- `per_device_train_batch_size`: 32
- `per_device_eval_batch_size`: 16
- `per_gpu_train_batch_size`: None
- `per_gpu_eval_batch_size`: None
- `gradient_accumulation_steps`: 16
- `eval_accumulation_steps`: None
- `torch_empty_cache_steps`: None
- `learning_rate`: 2e-05
- `weight_decay`: 0.0
- `adam_beta1`: 0.9
- `adam_beta2`: 0.999
- `adam_epsilon`: 1e-08
- `max_grad_norm`: 1.0
- `num_train_epochs`: 4
- `max_steps`: -1
- `lr_scheduler_type`: cosine
- `lr_scheduler_kwargs`: {}
- `warmup_ratio`: 0.1
- `warmup_steps`: 0
- `log_level`: passive
- `log_level_replica`: warning
- `log_on_each_node`: True
- `logging_nan_inf_filter`: True
- `save_safetensors`: True
- `save_on_each_node`: False
- `save_only_model`: False
- `restore_callback_states_from_checkpoint`: False
- `no_cuda`: False
- `use_cpu`: False
- `use_mps_device`: False
- `seed`: 42
- `data_seed`: None
- `jit_mode_eval`: False
- `use_ipex`: False
- `bf16`: True
- `fp16`: False
- `fp16_opt_level`: O1
- `half_precision_backend`: auto
- `bf16_full_eval`: False
- `fp16_full_eval`: False
- `tf32`: True
- `local_rank`: 0
- `ddp_backend`: None
- `tpu_num_cores`: None
- `tpu_metrics_debug`: False
- `debug`: []
- `dataloader_drop_last`: False
- `dataloader_num_workers`: 0
- `dataloader_prefetch_factor`: None
- `past_index`: -1
- `disable_tqdm`: False
- `remove_unused_columns`: True
- `label_names`: None
- `load_best_model_at_end`: True
- `ignore_data_skip`: False
- `fsdp`: []
- `fsdp_min_num_params`: 0
- `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
- `tp_size`: 0
- `fsdp_transformer_layer_cls_to_wrap`: None
- `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
- `deepspeed`: None
- `label_smoothing_factor`: 0.0
- `optim`: adamw_torch_fused
- `optim_args`: None
- `adafactor`: False
- `group_by_length`: False
- `length_column_name`: length
- `ddp_find_unused_parameters`: None
- `ddp_bucket_cap_mb`: None
- `ddp_broadcast_buffers`: False
- `dataloader_pin_memory`: True
- `dataloader_persistent_workers`: False
- `skip_memory_metrics`: True
- `use_legacy_prediction_loop`: False
- `push_to_hub`: True
- `resume_from_checkpoint`: None
- `hub_model_id`: bnkc123/bge-base-financial-matryoshka
- `hub_strategy`: every_save
- `hub_private_repo`: None
- `hub_always_push`: False
- `gradient_checkpointing`: False
- `gradient_checkpointing_kwargs`: None
- `include_inputs_for_metrics`: False
- `include_for_metrics`: []
- `eval_do_concat_batches`: True
- `fp16_backend`: auto
- `push_to_hub_model_id`: None
- `push_to_hub_organization`: None
- `mp_parameters`: 
- `auto_find_batch_size`: False
- `full_determinism`: False
- `torchdynamo`: None
- `ray_scope`: last
- `ddp_timeout`: 1800
- `torch_compile`: False
- `torch_compile_backend`: None
- `torch_compile_mode`: None
- `include_tokens_per_second`: False
- `include_num_input_tokens_seen`: False
- `neftune_noise_alpha`: None
- `optim_target_modules`: None
- `batch_eval_metrics`: False
- `eval_on_start`: False
- `use_liger_kernel`: False
- `eval_use_gather_object`: False
- `average_tokens_across_devices`: False
- `prompts`: None
- `batch_sampler`: no_duplicates
- `multi_dataset_batch_sampler`: proportional

</details>

### Training Logs
| Epoch     | Step   | Training Loss | dim_768_cosine_ndcg@10 | dim_512_cosine_ndcg@10 | dim_256_cosine_ndcg@10 | dim_128_cosine_ndcg@10 | dim_64_cosine_ndcg@10 |
|:---------:|:------:|:-------------:|:----------------------:|:----------------------:|:----------------------:|:----------------------:|:---------------------:|
| 0.8122    | 10     | 25.483        | -                      | -                      | -                      | -                      | -                     |
| 1.0       | 13     | -             | 0.7890                 | 0.7887                 | 0.7815                 | 0.7647                 | 0.7280                |
| 1.5685    | 20     | 9.1323        | -                      | -                      | -                      | -                      | -                     |
| 2.0       | 26     | -             | 0.7952                 | 0.7982                 | 0.7933                 | 0.7801                 | 0.7477                |
| 2.3249    | 30     | 6.7535        | -                      | -                      | -                      | -                      | -                     |
| 3.0       | 39     | -             | 0.8019                 | 0.8048                 | 0.7989                 | 0.7865                 | 0.7547                |
| 3.0812    | 40     | 6.5646        | -                      | -                      | -                      | -                      | -                     |
| **3.731** | **48** | **-**         | **0.8008**             | **0.8044**             | **0.7984**             | **0.7873**             | **0.7546**            |

* The bold row denotes the saved checkpoint.

### Framework Versions
- Python: 3.12.6
- Sentence Transformers: 4.1.0
- Transformers: 4.51.3
- PyTorch: 2.7.0+cu126
- Accelerate: 1.6.0
- Datasets: 3.5.1
- Tokenizers: 0.21.1

## Citation

### BibTeX

#### Sentence Transformers
```bibtex
@inproceedings{reimers-2019-sentence-bert,
    title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
    author = "Reimers, Nils and Gurevych, Iryna",
    booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
    month = "11",
    year = "2019",
    publisher = "Association for Computational Linguistics",
    url = "https://arxiv.org/abs/1908.10084",
}
```

#### MatryoshkaLoss
```bibtex
@misc{kusupati2024matryoshka,
    title={Matryoshka Representation Learning},
    author={Aditya Kusupati and Gantavya Bhatt and Aniket Rege and Matthew Wallingford and Aditya Sinha and Vivek Ramanujan and William Howard-Snyder and Kaifeng Chen and Sham Kakade and Prateek Jain and Ali Farhadi},
    year={2024},
    eprint={2205.13147},
    archivePrefix={arXiv},
    primaryClass={cs.LG}
}
```

#### MultipleNegativesRankingLoss
```bibtex
@misc{henderson2017efficient,
    title={Efficient Natural Language Response Suggestion for Smart Reply},
    author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
    year={2017},
    eprint={1705.00652},
    archivePrefix={arXiv},
    primaryClass={cs.CL}
}
```

<!--
## Glossary

*Clearly define terms in order to be accessible across audiences.*
-->

<!--
## Model Card Authors

*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
-->

<!--
## Model Card Contact

*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
-->