|
--- |
|
language: |
|
- en |
|
base_model: |
|
- OpenGVLab/InternVL2_5-8B |
|
tags: |
|
- video |
|
- emotion |
|
--- |
|
|
|
# π Libra-Emo Model |
|
|
|
**A Multimodal Large Language Model for Fine-Grained Negative Emotion Detection** |
|
|
|
This is the official model release of Libra-Emo, a multimodal large language model for fine-grained negative emotion detection. The model is built upon [InternVL 2.5](https://github.com/OpenGVLab/InternVL) and fine-tuned on our [Libra-Emo Dataset](https://huggingface.co/datasets/caskcsg/Libra-Emo). |
|
|
|
## π Model Description |
|
|
|
Libra-Emo Model is designed to understand and analyze emotions in video content. It can: |
|
|
|
- Recognize **13** fine-grained emotion categories |
|
- Provide detailed **explanations** for emotion classifications |
|
- Process both visual and textual (subtitle) information |
|
- Handle real-world video scenarios with complex emotional expressions |
|
|
|
## π Usage |
|
|
|
### Environment Setup |
|
|
|
Our model is tested with CUDA 12.1. To set up the environment: |
|
|
|
```bash |
|
# Create and activate conda environment |
|
conda create -n libra-emo python=3.10 |
|
conda activate libra-emo |
|
|
|
# Clone and install InternVL dependencies |
|
git clone https://github.com/OpenGVLab/InternVL.git |
|
cd InternVL |
|
pip install -r requirements/internvl_chat.txt |
|
``` |
|
|
|
### Usage Example |
|
|
|
Here's a complete example of how to use Libra-Emo Model for video emotion analysis: |
|
|
|
```python |
|
import numpy as np |
|
import torch |
|
import torchvision.transforms as T |
|
from decord import VideoReader, cpu |
|
from PIL import Image |
|
from torchvision.transforms.functional import InterpolationMode |
|
from transformers import AutoModel, AutoTokenizer |
|
|
|
def build_transform(input_size): |
|
MEAN = (0.485, 0.456, 0.406) |
|
STD = (0.229, 0.224, 0.225) |
|
transform = T.Compose( |
|
[ |
|
T.Lambda(lambda img: img.convert("RGB") if img.mode != "RGB" else img), |
|
T.Resize((input_size, input_size), interpolation=InterpolationMode.BICUBIC), |
|
T.ToTensor(), |
|
T.Normalize(mean=MEAN, std=STD), |
|
] |
|
) |
|
return transform |
|
|
|
def find_closest_aspect_ratio(aspect_ratio, target_ratios, width, height, image_size): |
|
best_ratio_diff = float("inf") |
|
best_ratio = (1, 1) |
|
area = width * height |
|
for ratio in target_ratios: |
|
target_aspect_ratio = ratio[0] / ratio[1] |
|
ratio_diff = abs(aspect_ratio - target_aspect_ratio) |
|
if ratio_diff < best_ratio_diff: |
|
best_ratio_diff = ratio_diff |
|
best_ratio = ratio |
|
elif ratio_diff == best_ratio_diff: |
|
if area > 0.5 * image_size * image_size * ratio[0] * ratio[1]: |
|
best_ratio = ratio |
|
return best_ratio |
|
|
|
def dynamic_preprocess( |
|
image, min_num=1, max_num=12, image_size=448, use_thumbnail=False |
|
): |
|
orig_width, orig_height = image.size |
|
aspect_ratio = orig_width / orig_height |
|
|
|
# calculate the existing image aspect ratio |
|
target_ratios = set( |
|
(i, j) |
|
for n in range(min_num, max_num + 1) |
|
for i in range(1, n + 1) |
|
for j in range(1, n + 1) |
|
if i * j <= max_num and i * j >= min_num |
|
) |
|
target_ratios = sorted(target_ratios, key=lambda x: x[0] * x[1]) |
|
|
|
# find the closest aspect ratio to the target |
|
target_aspect_ratio = find_closest_aspect_ratio( |
|
aspect_ratio, target_ratios, orig_width, orig_height, image_size |
|
) |
|
|
|
# calculate the target width and height |
|
target_width = image_size * target_aspect_ratio[0] |
|
target_height = image_size * target_aspect_ratio[1] |
|
blocks = target_aspect_ratio[0] * target_aspect_ratio[1] |
|
|
|
# resize the image |
|
resized_img = image.resize((target_width, target_height)) |
|
processed_images = [] |
|
for i in range(blocks): |
|
box = ( |
|
(i % (target_width // image_size)) * image_size, |
|
(i // (target_width // image_size)) * image_size, |
|
((i % (target_width // image_size)) + 1) * image_size, |
|
((i // (target_width // image_size)) + 1) * image_size, |
|
) |
|
# split the image |
|
split_img = resized_img.crop(box) |
|
processed_images.append(split_img) |
|
assert len(processed_images) == blocks |
|
if use_thumbnail and len(processed_images) != 1: |
|
thumbnail_img = image.resize((image_size, image_size)) |
|
processed_images.append(thumbnail_img) |
|
return processed_images |
|
|
|
def load_image(image_file, input_size=448, max_num=12): |
|
image = Image.open(image_file).convert("RGB") |
|
transform = build_transform(input_size=input_size) |
|
images = dynamic_preprocess( |
|
image, image_size=input_size, use_thumbnail=True, max_num=max_num |
|
) |
|
pixel_values = [transform(image) for image in images] |
|
pixel_values = torch.stack(pixel_values) |
|
return pixel_values |
|
|
|
def get_index(bound, fps, max_frame, first_idx=0, num_segments=32): |
|
if bound: |
|
start, end = bound[0], bound[1] |
|
else: |
|
start, end = -100000, 100000 |
|
start_idx = max(first_idx, round(start * fps)) |
|
end_idx = min(round(end * fps), max_frame) |
|
seg_size = float(end_idx - start_idx) / num_segments |
|
frame_indices = np.array( |
|
[ |
|
int(start_idx + (seg_size / 2) + np.round(seg_size * idx)) |
|
for idx in range(num_segments) |
|
] |
|
) |
|
return frame_indices |
|
|
|
def load_video(video_path, bound=None, input_size=448, max_num=1, num_segments=32): |
|
vr = VideoReader(video_path, ctx=cpu(0), num_threads=1) |
|
max_frame = len(vr) - 1 |
|
fps = float(vr.get_avg_fps()) |
|
|
|
pixel_values_list, num_patches_list = [], [] |
|
transform = build_transform(input_size=input_size) |
|
frame_indices = get_index( |
|
bound, fps, max_frame, first_idx=0, num_segments=num_segments |
|
) |
|
for frame_index in frame_indices: |
|
img = Image.fromarray(vr[frame_index].asnumpy()).convert("RGB") |
|
img = dynamic_preprocess( |
|
img, image_size=input_size, use_thumbnail=True, max_num=max_num |
|
) |
|
pixel_values = [transform(tile) for tile in img] |
|
pixel_values = torch.stack(pixel_values) |
|
num_patches_list.append(pixel_values.shape[0]) |
|
pixel_values_list.append(pixel_values) |
|
pixel_values = torch.cat(pixel_values_list) |
|
return pixel_values, num_patches_list |
|
|
|
|
|
# Step 1: load the model |
|
# If you have an 80G A100 GPU, you can put the entire model on a single GPU. |
|
model_path = "caskcsg/Libra-Emo-8B" |
|
model = AutoModel.from_pretrained( |
|
model_path, |
|
torch_dtype=torch.bfloat16, |
|
low_cpu_mem_usage=True, |
|
trust_remote_code=True, |
|
device_map="cuda:0" |
|
) |
|
model.eval() |
|
tokenizer = AutoTokenizer.from_pretrained( |
|
model_path, trust_remote_code=True, use_fast=False |
|
) |
|
|
|
# Step 2: load the video |
|
video_path = "your_video_path" # change to your video path |
|
pixel_values, num_patches_list = load_video( |
|
video_path, num_segments=16, max_num=1 |
|
) |
|
pixel_values = pixel_values.to(torch.bfloat16).to(model.device) |
|
video_prefix = "".join( |
|
[f"Frame-{i+1}: <image>\n" for i in range(len(num_patches_list))] |
|
) |
|
|
|
# Step 3: set the question |
|
subtitle = None # change to your subtitle (subtitle is optional, if you don't have subtitle, please set it to None) |
|
if subtitle is None: |
|
question = ( |
|
video_prefix |
|
+ "The above is a video. Please accurately identify the emotional label expressed by the people in the video. Emotional labels include should be limited to: happy, excited, angry, disgusted, hateful, surprised, amazed, frustrated, sad, fearful, despairful, ironic, neutral. The output format should be:\n[label]\n[explanation]" |
|
) |
|
else: |
|
question = ( |
|
video_prefix |
|
+ f"The above is a video. The video's subtitle is '{subtitle}', which maybe the words spoken by the person. Please accurately identify the emotional label expressed by the people in the video. Emotional labels include should be limited to: happy, excited, angry, disgusted, hateful, surprised, amazed, frustrated, sad, fearful, despairful, ironic, neutral. The output format should be:\n[label]\n[explanation]" |
|
) |
|
|
|
# Step 4: generate the response |
|
response, history = model.chat( |
|
tokenizer, |
|
pixel_values, |
|
question, |
|
dict(max_new_tokens=512, do_sample=False), |
|
num_patches_list=num_patches_list, |
|
history=None, |
|
return_history=True, |
|
) |
|
print(response) |
|
``` |
|
|
|
The model will output the emotion label and explanation in the following format: |
|
``` |
|
[label] |
|
[explanation] |
|
``` |
|
|
|
**Note**: If you aim to obtain emotion labels more quickly without requiring explanations, consider reducing the `max_new_tokens` value in the generation configuration. |
|
|
|
## π Performance Comparison |
|
|
|
We evaluate our models on the [Libra-Emo Bench](https://huggingface.co/datasets/caskcsg/Libra-Emo), comparing with both closed-source and open-source models. The evaluation metrics include accuracy and F1 scores for all emotions (13 classes) and negative emotions (8 classes). |
|
|
|
### Performance Comparison of MLLMs on Libra-Emo Bench |
|
|
|
| **Model** | **Accuracy** | **Macro-F1** | **Weighted-F1** | **Accuracy (Neg)** | **Macro-F1 (Neg)** | **Weighted-F1 (Neg)** | |
|
|:--------------------------|:------------:|:------------:|:---------------:|:------------------:|:------------------:|:---------------------:| |
|
| ***Closed-Source Models*** | | | | | | | |
|
| Gemini-2.0-Flash | **65.67** | **63.98** | **64.51** | 65.00 | 62.97 | 63.86 | |
|
| Gemini-1.5-Flash | 64.41 | 62.36 | 62.52 | 61.32 | 58.85 | 58.74 | |
|
| GPT-4o | 62.99 | 63.56 | 63.32 | **67.89** | **67.54** | **67.89** | |
|
| Claude-3.5-Sonnet | 52.13 | 48.38 | 49.38 | 49.47 | 49.32 | 50.50 | |
|
| ***Open-Source Models*** | | | | | | | |
|
| LLaVA-Video-7B-Qwen2 | 33.39 | 30.14 | 31.25 | 22.11 | 25.55 | 26.65 | |
|
| MiniCPM-o 2.6 (8B) | 42.83 | 40.23 | 40.26 | 40.53 | 37.29 | 38.00 | |
|
| Qwen2.5-VL-7B | 47.56 | 44.18 | 43.68 | 41.32 | 39.07 | 38.50 | |
|
| NVILA-8B | 41.89 | 35.92 | 36.01 | 42.89 | 32.83 | 33.88 | |
|
| Phi-3.5-vision-instruct | 53.39 | 51.23 | 51.16 | **52.89** | **49.97** | **49.98** | |
|
| InternVL-2.5-1B | 23.46 | 17.33 | 18.14 | 22.11 | 16.48 | 17.26 | |
|
| InternVL-2.5-2B | 25.98 | 22.31 | 22.19 | 30.79 | 24.97 | 24.59 | |
|
| InternVL-2.5-4B | 42.99 | 39.58 | 38.81 | 37.89 | 38.78 | 38.55 | |
|
| InternVL-2.5-8B | **54.96** | **51.42** | **51.64** | 50.53 | 47.07 | 47.22 | |
|
| ***Fine-Tuned on Libra-Emo*** | | | | | | | |
|
| Libra-Emo-1B | 53.54 (β30.08) | 49.44 (β32.11) | 50.19 (β32.05) | 46.84 (β24.73) | 41.53 (β25.05) | 42.25 (β24.99) | |
|
| Libra-Emo-2B | 56.38 (β30.40) | 53.60 (β31.29) | 53.90 (β31.71) | 50.26 (β19.47) | 48.79 (β23.82) | 48.91 (β24.32) | |
|
| Libra-Emo-4B | 65.20 (β22.21) | 64.12 (β24.54) | 64.41 (β25.60) | 60.79 (β22.90) | 61.30 (β22.52) | 61.61 (β23.06) | |
|
| **Libra-Emo-8B** | **71.18 (β16.22)** | **70.51 (β19.09)** | **70.71 (β19.07)** | **70.53 (β20.00)** | **69.94 (β22.87)** | **70.14 (β22.92)** | |
|
|
|
### Key Findings |
|
|
|
1. Our Libra-Emo models significantly outperform their base InternVL models, with improvements up to 30% in accuracy and F1 scores. |
|
2. The 8B version achieves the best performance, reaching 71.18% accuracy and 70.51% macro-F1 score on all emotions. |
|
3. For negative emotions, our models show strong performance with up to 70.53% accuracy and 70.14% weighted-F1 score. |
|
4. The performance scales well with model size, showing consistent improvements from 1B to 8B parameters. |
|
|
|
> **Note**: Our technical report with detailed methodology and analysis will be released soon. |