csikasote's picture
End of training
e4bc8d6 verified
metadata
library_name: transformers
license: apache-2.0
base_model: openai/whisper-medium
tags:
  - generated_from_trainer
datasets:
  - swagen
metrics:
  - wer
model-index:
  - name: whisper-medium-swagen-combined-30hrs-model
    results:
      - task:
          name: Automatic Speech Recognition
          type: automatic-speech-recognition
        dataset:
          name: swagen
          type: swagen
        metrics:
          - name: Wer
            type: wer
            value: 0.2234172077922078

whisper-medium-swagen-combined-30hrs-model

This model is a fine-tuned version of openai/whisper-medium on the swagen dataset. It achieves the following results on the evaluation set:

  • Loss: 0.3610
  • Wer: 0.2234

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 2
  • eval_batch_size: 2
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 8
  • optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 500
  • num_epochs: 30.0
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer
2.7508 0.0828 200 0.8134 0.4877
1.8748 0.1656 400 0.6291 0.3898
1.6214 0.2484 600 0.5560 0.3431
1.559 0.3312 800 0.4968 0.2953
1.3616 0.4140 1000 0.4720 0.2872
1.3078 0.4967 1200 0.4577 0.2978
1.2579 0.5795 1400 0.4218 0.2758
1.214 0.6623 1600 0.4156 0.2654
1.0719 0.7451 1800 0.4005 0.2315
1.0432 0.8279 2000 0.3864 0.2433
0.9825 0.9107 2200 0.3743 0.2207
1.0952 0.9935 2400 0.3610 0.2234
0.6001 1.0766 2600 0.3888 0.2423
0.5491 1.1594 2800 0.3730 0.2265
0.6732 1.2422 3000 0.3702 0.2201

Framework versions

  • Transformers 4.47.1
  • Pytorch 2.5.1+cu124
  • Datasets 3.2.0
  • Tokenizers 0.21.0