|
--- |
|
library_name: transformers |
|
license: apache-2.0 |
|
base_model: openai/whisper-medium |
|
tags: |
|
- generated_from_trainer |
|
datasets: |
|
- swagen |
|
metrics: |
|
- wer |
|
model-index: |
|
- name: whisper-medium-swagen-combined-30hrs-model |
|
results: |
|
- task: |
|
name: Automatic Speech Recognition |
|
type: automatic-speech-recognition |
|
dataset: |
|
name: swagen |
|
type: swagen |
|
metrics: |
|
- name: Wer |
|
type: wer |
|
value: 0.2234172077922078 |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# whisper-medium-swagen-combined-30hrs-model |
|
|
|
This model is a fine-tuned version of [openai/whisper-medium](https://huggingface.co/openai/whisper-medium) on the swagen dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.3610 |
|
- Wer: 0.2234 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 1e-05 |
|
- train_batch_size: 2 |
|
- eval_batch_size: 2 |
|
- seed: 42 |
|
- gradient_accumulation_steps: 4 |
|
- total_train_batch_size: 8 |
|
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments |
|
- lr_scheduler_type: linear |
|
- lr_scheduler_warmup_steps: 500 |
|
- num_epochs: 30.0 |
|
- mixed_precision_training: Native AMP |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Wer | |
|
|:-------------:|:------:|:----:|:---------------:|:------:| |
|
| 2.7508 | 0.0828 | 200 | 0.8134 | 0.4877 | |
|
| 1.8748 | 0.1656 | 400 | 0.6291 | 0.3898 | |
|
| 1.6214 | 0.2484 | 600 | 0.5560 | 0.3431 | |
|
| 1.559 | 0.3312 | 800 | 0.4968 | 0.2953 | |
|
| 1.3616 | 0.4140 | 1000 | 0.4720 | 0.2872 | |
|
| 1.3078 | 0.4967 | 1200 | 0.4577 | 0.2978 | |
|
| 1.2579 | 0.5795 | 1400 | 0.4218 | 0.2758 | |
|
| 1.214 | 0.6623 | 1600 | 0.4156 | 0.2654 | |
|
| 1.0719 | 0.7451 | 1800 | 0.4005 | 0.2315 | |
|
| 1.0432 | 0.8279 | 2000 | 0.3864 | 0.2433 | |
|
| 0.9825 | 0.9107 | 2200 | 0.3743 | 0.2207 | |
|
| 1.0952 | 0.9935 | 2400 | 0.3610 | 0.2234 | |
|
| 0.6001 | 1.0766 | 2600 | 0.3888 | 0.2423 | |
|
| 0.5491 | 1.1594 | 2800 | 0.3730 | 0.2265 | |
|
| 0.6732 | 1.2422 | 3000 | 0.3702 | 0.2201 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.47.1 |
|
- Pytorch 2.5.1+cu124 |
|
- Datasets 3.2.0 |
|
- Tokenizers 0.21.0 |
|
|