Christina Theodoris
move import wandb to conditional
7e4697d
from typing import Dict, List, Optional, Union
import json
import os
import pickle
import random
import torch
import numpy as np
import optuna
from sklearn.metrics import accuracy_score, f1_score
from sklearn.preprocessing import LabelEncoder
from torch.utils.tensorboard import SummaryWriter
from transformers import AutoConfig, BertConfig, BertModel, get_linear_schedule_with_warmup, get_cosine_schedule_with_warmup
from torch.optim import AdamW
import pandas as pd
import torch.distributed as dist
from torch.nn.parallel import DistributedDataParallel as DDP
import torch.multiprocessing as mp
from contextlib import contextmanager
def set_seed(seed):
random.seed(seed)
np.random.seed(seed)
torch.manual_seed(seed)
torch.cuda.manual_seed_all(seed)
torch.backends.cudnn.deterministic = True
torch.backends.cudnn.benchmark = False
def initialize_wandb(config):
if config.get("use_wandb", False):
import wandb
wandb.init(
project=config.get("wandb_project", "geneformer_multitask"),
name=config.get("run_name", "experiment"),
config=config,
reinit=True,
)
def create_model(config, num_labels_list, device, is_distributed=False, local_rank=0):
"""Create and initialize the model based on configuration."""
from .model import GeneformerMultiTask
model = GeneformerMultiTask(
config["pretrained_path"],
num_labels_list,
dropout_rate=config.get("dropout_rate", 0.1),
use_task_weights=config.get("use_task_weights", False),
task_weights=config.get("task_weights", None),
max_layers_to_freeze=config.get("max_layers_to_freeze", 0),
use_attention_pooling=config.get("use_attention_pooling", False),
)
# Move model to device
model.to(device)
if is_distributed:
model = DDP(model, device_ids=[local_rank], output_device=local_rank, find_unused_parameters=True)
return model
def setup_optimizer_and_scheduler(model, config, total_steps):
"""Set up optimizer and learning rate scheduler."""
no_decay = ["bias", "LayerNorm.weight"]
optimizer_grouped_parameters = [
{
"params": [p for n, p in model.named_parameters()
if not any(nd in n for nd in no_decay) and p.requires_grad],
"weight_decay": config["weight_decay"],
},
{
"params": [p for n, p in model.named_parameters()
if any(nd in n for nd in no_decay) and p.requires_grad],
"weight_decay": 0.0,
},
]
optimizer = AdamW(
optimizer_grouped_parameters,
lr=config["learning_rate"],
eps=config.get("adam_epsilon", 1e-8)
)
# Prepare scheduler
warmup_steps = int(total_steps * config["warmup_ratio"])
scheduler_map = {
"linear": get_linear_schedule_with_warmup,
"cosine": get_cosine_schedule_with_warmup
}
scheduler_fn = scheduler_map.get(config["lr_scheduler_type"])
if not scheduler_fn:
raise ValueError(f"Unsupported scheduler type: {config['lr_scheduler_type']}")
scheduler = scheduler_fn(optimizer, num_warmup_steps=warmup_steps, num_training_steps=total_steps)
return optimizer, scheduler
def save_model(model, model_save_directory):
"""Save model weights and configuration."""
os.makedirs(model_save_directory, exist_ok=True)
# Handle DDP model
if isinstance(model, DDP):
model_to_save = model.module
else:
model_to_save = model
model_state_dict = model_to_save.state_dict()
model_save_path = os.path.join(model_save_directory, "pytorch_model.bin")
torch.save(model_state_dict, model_save_path)
# Save the model configuration
model_to_save.config.to_json_file(os.path.join(model_save_directory, "config.json"))
print(f"Model and configuration saved to {model_save_directory}")
def save_hyperparameters(model_save_directory, hyperparams):
"""Save hyperparameters to a JSON file."""
hyperparams_path = os.path.join(model_save_directory, "hyperparameters.json")
with open(hyperparams_path, "w") as f:
json.dump(hyperparams, f)
print(f"Hyperparameters saved to {hyperparams_path}")
def calculate_metrics(labels=None, preds=None, task_data=None, metric_type="task_specific", return_format="dict"):
if metric_type == "single":
# Calculate metrics for a single task
if labels is None or preds is None:
raise ValueError("Labels and predictions must be provided for single task metrics")
task_name = None
if isinstance(labels, dict) and len(labels) == 1:
task_name = list(labels.keys())[0]
labels = labels[task_name]
preds = preds[task_name]
f1 = f1_score(labels, preds, average="macro")
accuracy = accuracy_score(labels, preds)
if return_format == "tuple":
return f1, accuracy
result = {"f1": f1, "accuracy": accuracy}
if task_name:
return {task_name: result}
return result
elif metric_type == "task_specific":
# Calculate metrics for multiple tasks
if task_data:
result = {}
for task_name, (task_labels, task_preds) in task_data.items():
f1 = f1_score(task_labels, task_preds, average="macro")
accuracy = accuracy_score(task_labels, task_preds)
result[task_name] = {"f1": f1, "accuracy": accuracy}
return result
elif isinstance(labels, dict) and isinstance(preds, dict):
result = {}
for task_name in labels:
if task_name in preds:
f1 = f1_score(labels[task_name], preds[task_name], average="macro")
accuracy = accuracy_score(labels[task_name], preds[task_name])
result[task_name] = {"f1": f1, "accuracy": accuracy}
return result
else:
raise ValueError("For task_specific metrics, either task_data or labels and preds dictionaries must be provided")
elif metric_type == "combined":
# Calculate combined metrics across all tasks
if labels is None or preds is None:
raise ValueError("Labels and predictions must be provided for combined metrics")
# Handle label encoding for non-numeric labels
if not all(isinstance(x, (int, float)) for x in labels + preds):
le = LabelEncoder()
le.fit(labels + preds)
labels = le.transform(labels)
preds = le.transform(preds)
f1 = f1_score(labels, preds, average="macro")
accuracy = accuracy_score(labels, preds)
if return_format == "tuple":
return f1, accuracy
return {"f1": f1, "accuracy": accuracy}
else:
raise ValueError(f"Unknown metric_type: {metric_type}")
def get_layer_freeze_range(pretrained_path):
if not pretrained_path:
return {"min": 0, "max": 0}
config = AutoConfig.from_pretrained(pretrained_path)
total_layers = config.num_hidden_layers
return {"min": 0, "max": total_layers - 1}
def prepare_training_environment(config):
"""
Prepare the training environment by setting seed and loading data.
Returns:
tuple: (device, train_loader, val_loader, train_cell_id_mapping,
val_cell_id_mapping, num_labels_list)
"""
from .data import prepare_data_loaders
# Set seed for reproducibility
set_seed(config["seed"])
# Set up device - for non-distributed training
if not config.get("distributed_training", False):
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
else:
# For distributed training, device will be set per process
device = None
# Load data using the streaming dataset
data = prepare_data_loaders(config)
# For distributed training, we'll set up samplers later in the distributed worker
# Don't create DistributedSampler here as process group isn't initialized yet
return (
device,
data["train_loader"],
data["val_loader"],
data["train_cell_mapping"],
data["val_cell_mapping"],
data["num_labels_list"],
)
# Optuna hyperparameter optimization utilities
def save_trial_callback(study, trial, trials_result_path):
"""
Callback to save Optuna trial results to a file.
Args:
study: Optuna study object
trial: Current trial object
trials_result_path: Path to save trial results
"""
with open(trials_result_path, "a") as f:
f.write(
f"Trial {trial.number}: Value (F1 Macro): {trial.value}, Params: {trial.params}\n"
)
def create_optuna_study(objective, n_trials: int, trials_result_path: str, tensorboard_log_dir: str) -> optuna.Study:
"""Create and run an Optuna study with TensorBoard logging."""
from optuna.integration import TensorBoardCallback
study = optuna.create_study(direction="maximize")
study.optimize(
objective,
n_trials=n_trials,
callbacks=[
lambda study, trial: save_trial_callback(study, trial, trials_result_path),
TensorBoardCallback(dirname=tensorboard_log_dir, metric_name="F1 Macro")
]
)
return study
@contextmanager
def setup_logging(config):
run_name = config.get("run_name", "manual_run")
log_dir = os.path.join(config["tensorboard_log_dir"], run_name)
writer = SummaryWriter(log_dir=log_dir)
try:
yield writer
finally:
writer.close()
def log_training_step(loss, writer, config, epoch, steps_per_epoch, batch_idx):
"""Log training step metrics to TensorBoard and optionally W&B."""
writer.add_scalar(
"Training Loss", loss, epoch * steps_per_epoch + batch_idx
)
if config.get("use_wandb", False):
import wandb
wandb.log({"Training Loss": loss})
def log_validation_metrics(task_metrics, val_loss, config, writer, epoch):
"""Log validation metrics to console, TensorBoard, and optionally W&B."""
for task_name, metrics in task_metrics.items():
print(
f"{task_name} - Validation F1 Macro: {metrics['f1']:.4f}, Validation Accuracy: {metrics['accuracy']:.4f}"
)
if config.get("use_wandb", False):
import wandb
wandb.log(
{
f"{task_name} Validation F1 Macro": metrics["f1"],
f"{task_name} Validation Accuracy": metrics["accuracy"],
}
)
writer.add_scalar("Validation Loss", val_loss, epoch)
for task_name, metrics in task_metrics.items():
writer.add_scalar(f"{task_name} - Validation F1 Macro", metrics["f1"], epoch)
writer.add_scalar(
f"{task_name} - Validation Accuracy", metrics["accuracy"], epoch
)
def load_label_mappings(results_dir: str, task_names: List[str]) -> Dict[str, Dict]:
"""Load or initialize task label mappings."""
label_mappings_path = os.path.join(results_dir, "task_label_mappings_val.pkl")
if os.path.exists(label_mappings_path):
with open(label_mappings_path, 'rb') as f:
return pickle.load(f)
return {task_name: {} for task_name in task_names}
def create_prediction_row(sample_idx: int, val_cell_indices: Dict, task_true_labels: Dict,
task_pred_labels: Dict, task_pred_probs: Dict, task_names: List[str],
inverted_mappings: Dict, val_cell_mapping: Dict) -> Dict:
"""Create a row for validation predictions."""
batch_cell_idx = val_cell_indices.get(sample_idx)
cell_id = val_cell_mapping.get(batch_cell_idx, f"unknown_cell_{sample_idx}") if batch_cell_idx is not None else f"unknown_cell_{sample_idx}"
row = {"Cell ID": cell_id}
for task_name in task_names:
if task_name in task_true_labels and sample_idx < len(task_true_labels[task_name]):
true_idx = task_true_labels[task_name][sample_idx]
pred_idx = task_pred_labels[task_name][sample_idx]
true_label = inverted_mappings.get(task_name, {}).get(true_idx, f"Unknown-{true_idx}")
pred_label = inverted_mappings.get(task_name, {}).get(pred_idx, f"Unknown-{pred_idx}")
row.update({
f"{task_name}_true_idx": true_idx,
f"{task_name}_pred_idx": pred_idx,
f"{task_name}_true_label": true_label,
f"{task_name}_pred_label": pred_label
})
if task_name in task_pred_probs and sample_idx < len(task_pred_probs[task_name]):
probs = task_pred_probs[task_name][sample_idx]
if isinstance(probs, (list, np.ndarray)) or (hasattr(probs, '__iter__') and not isinstance(probs, str)):
prob_list = list(probs) if not isinstance(probs, list) else probs
row[f"{task_name}_all_probs"] = ",".join(map(str, prob_list))
for class_idx, prob in enumerate(prob_list):
class_label = inverted_mappings.get(task_name, {}).get(class_idx, f"Unknown-{class_idx}")
row[f"{task_name}_prob_{class_label}"] = prob
else:
row[f"{task_name}_all_probs"] = str(probs)
return row
def save_validation_predictions(
val_cell_indices,
task_true_labels,
task_pred_labels,
task_pred_probs,
config,
trial_number=None,
):
"""Save validation predictions to a CSV file with class labels and probabilities."""
os.makedirs(config["results_dir"], exist_ok=True)
if trial_number is not None:
os.makedirs(os.path.join(config["results_dir"], f"trial_{trial_number}"), exist_ok=True)
val_preds_file = os.path.join(config["results_dir"], f"trial_{trial_number}/val_preds.csv")
else:
val_preds_file = os.path.join(config["results_dir"], "manual_run_val_preds.csv")
if not val_cell_indices or not task_true_labels:
pd.DataFrame().to_csv(val_preds_file, index=False)
return
try:
label_mappings = load_label_mappings(config["results_dir"], config["task_names"])
inverted_mappings = {task: {idx: label for label, idx in mapping.items()} for task, mapping in label_mappings.items()}
val_cell_mapping = config.get("val_cell_mapping", {})
# Determine maximum number of samples
max_samples = max(
[len(val_cell_indices)] +
[len(task_true_labels[task]) for task in task_true_labels]
)
rows = [
create_prediction_row(
sample_idx, val_cell_indices, task_true_labels, task_pred_labels,
task_pred_probs, config["task_names"], inverted_mappings, val_cell_mapping
)
for sample_idx in range(max_samples)
]
pd.DataFrame(rows).to_csv(val_preds_file, index=False)
except Exception as e:
pd.DataFrame([{"Error": str(e)}]).to_csv(val_preds_file, index=False)
def setup_distributed_environment(rank, world_size, config):
"""
Setup the distributed training environment.
Args:
rank (int): The rank of the current process
world_size (int): Total number of processes
config (dict): Configuration dictionary
"""
os.environ['MASTER_ADDR'] = config.get('master_addr', 'localhost')
os.environ['MASTER_PORT'] = config.get('master_port', '12355')
# Initialize the process group
dist.init_process_group(
backend='nccl',
init_method='env://',
world_size=world_size,
rank=rank
)
# Set the device for this process
torch.cuda.set_device(rank)
def train_distributed(trainer_class, config, train_loader, val_loader, train_cell_id_mapping, val_cell_id_mapping, num_labels_list, trial_number=None, shared_dict=None):
"""Run distributed training across multiple GPUs with fallback to single GPU."""
world_size = torch.cuda.device_count()
if world_size <= 1:
print("Distributed training requested but only one GPU found. Falling back to single GPU training.")
config["distributed_training"] = False
trainer = trainer_class(config)
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
trainer.device = device
train_loader, val_loader, train_cell_id_mapping, val_cell_id_mapping, num_labels_list = trainer.setup(
train_loader, val_loader, train_cell_id_mapping, val_cell_id_mapping, num_labels_list
)
val_loss, model = trainer.train(
train_loader, val_loader, train_cell_id_mapping, val_cell_id_mapping, num_labels_list
)
model_save_directory = os.path.join(config["model_save_path"], "GeneformerMultiTask")
save_model(model, model_save_directory)
save_hyperparameters(model_save_directory, {
**get_config_value(config, "manual_hyperparameters", {}),
"dropout_rate": config["dropout_rate"],
"use_task_weights": config["use_task_weights"],
"task_weights": config["task_weights"],
"max_layers_to_freeze": config["max_layers_to_freeze"],
"use_attention_pooling": config["use_attention_pooling"],
})
if shared_dict is not None:
shared_dict['val_loss'] = val_loss
task_true_labels, task_pred_labels, task_pred_probs = collect_validation_predictions(model, val_loader, device, config)
shared_dict['task_metrics'] = calculate_metrics(labels=task_true_labels, preds=task_pred_labels, metric_type="task_specific")
shared_dict['model_state_dict'] = {k: v.cpu() for k, v in model.state_dict().items()}
return val_loss, model
print(f"Using distributed training with {world_size} GPUs")
mp.spawn(
_distributed_worker,
args=(world_size, trainer_class, config, train_loader, val_loader, train_cell_id_mapping, val_cell_id_mapping, num_labels_list, trial_number, shared_dict),
nprocs=world_size,
join=True
)
if trial_number is None and shared_dict is None:
model_save_directory = os.path.join(config["model_save_path"], "GeneformerMultiTask")
model_path = os.path.join(model_save_directory, "pytorch_model.bin")
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
model = create_model(config, num_labels_list, device)
model.load_state_dict(torch.load(model_path))
return 0.0, model
return None
def _distributed_worker(rank, world_size, trainer_class, config, train_loader, val_loader, train_cell_id_mapping, val_cell_id_mapping, num_labels_list, trial_number=None, shared_dict=None):
"""Worker function for distributed training."""
setup_distributed_environment(rank, world_size, config)
config["local_rank"] = rank
# Set up distributed samplers
from torch.utils.data import DistributedSampler
from .data import get_data_loader
train_sampler = DistributedSampler(train_loader.dataset, num_replicas=world_size, rank=rank, shuffle=True, drop_last=False)
val_sampler = DistributedSampler(val_loader.dataset, num_replicas=world_size, rank=rank, shuffle=False, drop_last=False)
train_loader = get_data_loader(train_loader.dataset, config["batch_size"], sampler=train_sampler, shuffle=False)
val_loader = get_data_loader(val_loader.dataset, config["batch_size"], sampler=val_sampler, shuffle=False)
if rank == 0:
print(f"Rank {rank}: Training {len(train_sampler)} samples, Validation {len(val_sampler)} samples")
print(f"Total samples across {world_size} GPUs: Training {len(train_sampler) * world_size}, Validation {len(val_sampler) * world_size}")
# Create and setup trainer
trainer = trainer_class(config)
train_loader, val_loader, train_cell_id_mapping, val_cell_id_mapping, num_labels_list = trainer.setup(
train_loader, val_loader, train_cell_id_mapping, val_cell_id_mapping, num_labels_list
)
# Train the model
val_loss, model = trainer.train(
train_loader, val_loader, train_cell_id_mapping, val_cell_id_mapping, num_labels_list
)
# Save model only from the main process
if rank == 0:
model_save_directory = os.path.join(config["model_save_path"], "GeneformerMultiTask")
save_model(model, model_save_directory)
save_hyperparameters(model_save_directory, {
**get_config_value(config, "manual_hyperparameters", {}),
"dropout_rate": config["dropout_rate"],
"use_task_weights": config["use_task_weights"],
"task_weights": config["task_weights"],
"max_layers_to_freeze": config["max_layers_to_freeze"],
"use_attention_pooling": config["use_attention_pooling"],
})
# For Optuna trials, store results in shared dictionary
if shared_dict is not None:
shared_dict['val_loss'] = val_loss
# Run validation on full dataset from rank 0 for consistent metrics
full_val_loader = get_data_loader(val_loader.dataset, config["batch_size"], sampler=None, shuffle=False)
# Get validation predictions using our utility function
task_true_labels, task_pred_labels, task_pred_probs = collect_validation_predictions(
model, full_val_loader, trainer.device, config
)
# Calculate metrics
task_metrics = calculate_metrics(labels=task_true_labels, preds=task_pred_labels, metric_type="task_specific")
shared_dict['task_metrics'] = task_metrics
# Store model state dict
if isinstance(model, DDP):
model_state_dict = model.module.state_dict()
else:
model_state_dict = model.state_dict()
shared_dict['model_state_dict'] = {k: v.cpu() for k, v in model_state_dict.items()}
# Clean up distributed environment
dist.destroy_process_group()
def save_model_without_heads(model_directory):
"""
Save a version of the fine-tuned model without classification heads.
Args:
model_directory (str): Path to the directory containing the fine-tuned model
"""
import torch
from transformers import BertConfig, BertModel
# Load the full model
model_path = os.path.join(model_directory, "pytorch_model.bin")
config_path = os.path.join(model_directory, "config.json")
if not os.path.exists(model_path) or not os.path.exists(config_path):
raise FileNotFoundError(f"Model files not found in {model_directory}")
# Load the configuration
config = BertConfig.from_json_file(config_path)
# Load the model state dict
state_dict = torch.load(model_path, map_location=torch.device('cpu'))
# Create a new model without heads
base_model = BertModel(config)
# Filter out the classification head parameters
base_model_state_dict = {}
for key, value in state_dict.items():
# Only keep parameters that belong to the base model (not classification heads)
if not key.startswith('classification_heads') and not key.startswith('attention_pool'):
base_model_state_dict[key] = value
# Load the filtered state dict into the base model
base_model.load_state_dict(base_model_state_dict, strict=False)
# Save the model without heads
output_dir = os.path.join(model_directory, "model_without_heads")
os.makedirs(output_dir, exist_ok=True)
# Save the model weights
torch.save(base_model.state_dict(), os.path.join(output_dir, "pytorch_model.bin"))
# Save the configuration
base_model.config.to_json_file(os.path.join(output_dir, "config.json"))
print(f"Model without classification heads saved to {output_dir}")
return output_dir
def get_config_value(config: Dict, key: str, default=None):
return config.get(key, default)
def collect_validation_predictions(model, val_loader, device, config) -> tuple:
task_true_labels = {}
task_pred_labels = {}
task_pred_probs = {}
with torch.no_grad():
for batch in val_loader:
input_ids = batch["input_ids"].to(device)
attention_mask = batch["attention_mask"].to(device)
labels = [batch["labels"][task_name].to(device) for task_name in config["task_names"]]
_, logits, _ = model(input_ids, attention_mask, labels)
for sample_idx in range(len(batch["input_ids"])):
for i, task_name in enumerate(config["task_names"]):
if task_name not in task_true_labels:
task_true_labels[task_name] = []
task_pred_labels[task_name] = []
task_pred_probs[task_name] = []
true_label = batch["labels"][task_name][sample_idx].item()
pred_label = torch.argmax(logits[i][sample_idx], dim=-1).item()
pred_prob = torch.softmax(logits[i][sample_idx], dim=-1).cpu().numpy()
task_true_labels[task_name].append(true_label)
task_pred_labels[task_name].append(pred_label)
task_pred_probs[task_name].append(pred_prob)
return task_true_labels, task_pred_labels, task_pred_probs