|
--- |
|
language: |
|
- en |
|
license: mit |
|
tags: |
|
- two-tower |
|
- semantic-search |
|
- document-retrieval |
|
- information-retrieval |
|
- dual-encoder |
|
--- |
|
|
|
# mlx7-two-tower-data |
|
|
|
This repository contains datasets used for training Two-Tower (Dual Encoder) models for document retrieval. |
|
|
|
## Dataset Description |
|
|
|
The datasets provided here are structured for training dual encoder models with various sampling strategies: |
|
|
|
- **classic_triplets**: 48.2 MB |
|
- **intra_query_neg**: 47.6 MB |
|
- **multi_pos_multi_neg**: 126.5 MB |
|
|
|
### Dataset Details |
|
|
|
- **classic_triplets.parquet**: Standard triplet format with (query, positive_document, negative_document) |
|
- **intra_query_neg.parquet**: Negative examples selected from within the same query batch |
|
- **multi_pos_multi_neg.parquet**: Multiple positive and negative examples per query |
|
|
|
## Usage |
|
|
|
```python |
|
import pandas as pd |
|
|
|
# Load a dataset |
|
df = pd.read_parquet("classic_triplets.parquet") |
|
|
|
# View the schema |
|
print(df.columns) |
|
|
|
# Example of working with the data |
|
queries = df["q_text"].tolist() |
|
positive_docs = df["d_pos_text"].tolist() |
|
negative_docs = df["d_neg_text"].tolist() |
|
``` |
|
|
|
## Data Source and Preparation |
|
|
|
These datasets are derived from the MS MARCO passage retrieval dataset, processed to create effective training examples for two-tower models. |
|
|
|
## Dataset Structure |
|
|
|
The datasets follow a common schema with the following fields: |
|
- `q_text`: Query text |
|
- `d_pos_text`: Positive (relevant) document text |
|
- `d_neg_text`: Negative (non-relevant) document text |
|
|
|
Additional fields may be present in specific datasets. |
|
|
|
## Citation |
|
|
|
If you use this dataset in your research, please cite the original MS MARCO dataset: |
|
|
|
``` |
|
@article{msmarco, |
|
title={MS MARCO: A Human Generated MAchine Reading COmprehension Dataset}, |
|
author={Nguyen, Tri and Rosenberg, Matthew and Song, Xia and Gao, Jianfeng and Tiwary, Saurabh and Majumder, Rangan and Deng, Li}, |
|
journal={arXiv preprint arXiv:1611.09268}, |
|
year={2016} |
|
} |
|
``` |
|
|