code
stringlengths
195
7.9k
space_complexity
stringclasses
6 values
time_complexity
stringclasses
7 values
# Python program to implement Manacher's Algorithm def findLongestPalindromicString(text): N = len(text) if N == 0: return N = 2*N+1 # Position count L = [0] * N L[0] = 0 L[1] = 1 C = 1 # centerPosition R = 2 # centerRightPosition i = 0 # currentRightPosition iMirror = 0 # currentLeftPosition maxLPSLength = 0 maxLPSCenterPosition = 0 start = -1 end = -1 diff = -1 # Uncomment it to print LPS Length array # printf("%d %d ", L[0], L[1]); for i in range(2,N): # get currentLeftPosition iMirror for currentRightPosition i iMirror = 2*C-i L[i] = 0 diff = R - i # If currentRightPosition i is within centerRightPosition R if diff > 0: L[i] = min(L[iMirror], diff) # Attempt to expand palindrome centered at currentRightPosition i # Here for odd positions, we compare characters and # if match then increment LPS Length by ONE # If even position, we just increment LPS by ONE without # any character comparison try: while ((i + L[i]) < N and (i - L[i]) > 0) and \ (((i + L[i] + 1) % 2 == 0) or \ (text[(i + L[i] + 1) // 2] == text[(i - L[i] - 1) // 2])): L[i]+=1 except Exception as e: pass if L[i] > maxLPSLength: # Track maxLPSLength maxLPSLength = L[i] maxLPSCenterPosition = i # If palindrome centered at currentRightPosition i # expand beyond centerRightPosition R, # adjust centerPosition C based on expanded palindrome. if i + L[i] > R: C = i R = i + L[i] # Uncomment it to print LPS Length array # printf("%d ", L[i]); start = (maxLPSCenterPosition - maxLPSLength) // 2 end = start + maxLPSLength - 1 print ("LPS of string is " + text + " : ",text[start:end+1]) # Driver program text1 = "babcbabcbaccba" findLongestPalindromicString(text1) text2 = "abaaba" findLongestPalindromicString(text2) text3 = "abababa" findLongestPalindromicString(text3) text4 = "abcbabcbabcba" findLongestPalindromicString(text4) text5 = "forgeeksskeegfor" findLongestPalindromicString(text5) text6 = "caba" findLongestPalindromicString(text6) text7 = "abacdfgdcaba" findLongestPalindromicString(text7) text8 = "abacdfgdcabba" findLongestPalindromicString(text8) text9 = "abacdedcaba" findLongestPalindromicString(text9) # This code is contributed by BHAVYA JAIN
linear
linear
# Python 3 program to print the # string in 'plus' pattern max = 100 # Function to make a cross # in the matrix def carveCross(str): n = len(str) if (n % 2 == 0) : ''' As, it is not possible to make the cross exactly in the middle of the matrix with an even length string.''' print("Not possible. Please enter " , "odd length string.\n") else : # declaring a 2D array i.e a matrix arr = [[ False for x in range(max)] for y in range(max)] m = n // 2 ''' Now, we will fill all the elements of the array with 'X''' for i in range( n) : for j in range(n) : arr[i][j] = 'X' '''Now, we will place the characters of the string in the matrix, such that a cross is formed in it.''' for i in range(n): ''' here the characters of the string will be added in the middle column of our array.''' arr[i][m] = str[i] for i in range(n): # here the characters of the # string will be added in the # middle row of our array. arr[m][i] = str[i] # Now finally, we will print # the array for i in range(n): for j in range(n): print( arr[i][j] , end=" ") print() # Driver Code if __name__ == "__main__": str = "PICTURE" carveCross(str) # This code is contributed # by ChitraNayal
constant
quadratic
# Python3 program to implement # wildcard pattern matching # algorithm # Function that matches input # txt with given wildcard pattern def stringmatch(txt, pat, n, m): # empty pattern can only # match with empty sting # Base case if (m == 0): return (n == 0) # step 1 # initialize markers : i = 0 j = 0 index_txt = -1 index_pat = -1 while(i < n - 2): # For step - (2, 5) if (j < m and txt[i] == pat[j]): i += 1 j += 1 # For step - (3) elif(j < m and pat[j] == '?'): i += 1 j += 1 # For step - (4) elif(j < m and pat[j] == '*'): index_txt = i index_pat = j j += 1 # For step - (5) elif(index_pat != -1): j = index_pat + 1 i = index_txt + 1 index_txt += 1 # For step - (6) else: return False # For step - (7) while (j < m and pat[j] == '*'): j += 1 # Final Check if(j == m): return True return False # Driver code strr = "baaabab" pattern = "*****ba*****ab" # char pattern[] = "ba*****ab" # char pattern[] = "ba * ab" # char pattern[] = "a * ab" if (stringmatch(strr, pattern, len(strr), len(pattern))): print("Yes") else: print( "No") pattern2 = "a*****ab"; if (stringmatch(strr, pattern2, len(strr), len(pattern2))): print("Yes") else: print( "No") # This code is contributed # by sahilhelangia
constant
linear
# Python3 program to replace c1 with c2 # and c2 with c1 def replace(s, c1, c2): l = len(s) # loop to traverse in the string for i in range(l): # check for c1 and replace if (s[i] == c1): s = s[0:i] + c2 + s[i + 1:] # check for c2 and replace elif (s[i] == c2): s = s[0:i] + c1 + s[i + 1:] return s # Driver Code if __name__ == '__main__': s = "grrksfoegrrks" c1 = 'e' c2 = 'r' print(replace(s, c1, c2)) # This code is contributed # by PrinciRaj1992
constant
linear
# Python program for implementation of # Aho-Corasick algorithm for string matching # defaultdict is used only for storing the final output # We will return a dictionary where key is the matched word # and value is the list of indexes of matched word from collections import defaultdict # For simplicity, Arrays and Queues have been implemented using lists. # If you want to improve performance try using them instead class AhoCorasick: def __init__(self, words): # Max number of states in the matching machine. # Should be equal to the sum of the length of all keywords. self.max_states = sum([len(word) for word in words]) # Maximum number of characters. # Currently supports only alphabets [a,z] self.max_characters = 26 # OUTPUT FUNCTION IS IMPLEMENTED USING out [] # Bit i in this mask is 1 if the word with # index i appears when the machine enters this state. # Lets say, a state outputs two words "he" and "she" and # in our provided words list, he has index 0 and she has index 3 # so value of out[state] for this state will be 1001 # It has been initialized to all 0. # We have taken one extra state for the root. self.out = [0]*(self.max_states+1) # FAILURE FUNCTION IS IMPLEMENTED USING fail [] # There is one value for each state + 1 for the root # It has been initialized to all -1 # This will contain the fail state value for each state self.fail = [-1]*(self.max_states+1) # GOTO FUNCTION (OR TRIE) IS IMPLEMENTED USING goto [[]] # Number of rows = max_states + 1 # Number of columns = max_characters i.e 26 in our case # It has been initialized to all -1. self.goto = [[-1]*self.max_characters for _ in range(self.max_states+1)] # Convert all words to lowercase # so that our search is case insensitive for i in range(len(words)): words[i] = words[i].lower() # All the words in dictionary which will be used to create Trie # The index of each keyword is important: # "out[state] & (1 << i)" is > 0 if we just found word[i] # in the text. self.words = words # Once the Trie has been built, it will contain the number # of nodes in Trie which is total number of states required <= max_states self.states_count = self.__build_matching_machine() # Builds the String matching machine. # Returns the number of states that the built machine has. # States are numbered 0 up to the return value - 1, inclusive. def __build_matching_machine(self): k = len(self.words) # Initially, we just have the 0 state states = 1 # Convalues for goto function, i.e., fill goto # This is same as building a Trie for words[] for i in range(k): word = self.words[i] current_state = 0 # Process all the characters of the current word for character in word: ch = ord(character) - 97 # Ascii value of 'a' = 97 # Allocate a new node (create a new state) # if a node for ch doesn't exist. if self.goto[current_state][ch] == -1: self.goto[current_state][ch] = states states += 1 current_state = self.goto[current_state][ch] # Add current word in output function self.out[current_state] |= (1<<i) # For all characters which don't have # an edge from root (or state 0) in Trie, # add a goto edge to state 0 itself for ch in range(self.max_characters): if self.goto[0][ch] == -1: self.goto[0][ch] = 0 # Failure function is computed in # breadth first order using a queue queue = [] # Iterate over every possible input for ch in range(self.max_characters): # All nodes of depth 1 have failure # function value as 0. For example, # in above diagram we move to 0 # from states 1 and 3. if self.goto[0][ch] != 0: self.fail[self.goto[0][ch]] = 0 queue.append(self.goto[0][ch]) # Now queue has states 1 and 3 while queue: # Remove the front state from queue state = queue.pop(0) # For the removed state, find failure # function for all those characters # for which goto function is not defined. for ch in range(self.max_characters): # If goto function is defined for # character 'ch' and 'state' if self.goto[state][ch] != -1: # Find failure state of removed state failure = self.fail[state] # Find the deepest node labeled by proper # suffix of String from root to current state. while self.goto[failure][ch] == -1: failure = self.fail[failure] failure = self.goto[failure][ch] self.fail[self.goto[state][ch]] = failure # Merge output values self.out[self.goto[state][ch]] |= self.out[failure] # Insert the next level node (of Trie) in Queue queue.append(self.goto[state][ch]) return states # Returns the next state the machine will transition to using goto # and failure functions. # current_state - The current state of the machine. Must be between # 0 and the number of states - 1, inclusive. # next_input - The next character that enters into the machine. def __find_next_state(self, current_state, next_input): answer = current_state ch = ord(next_input) - 97 # Ascii value of 'a' is 97 # If goto is not defined, use # failure function while self.goto[answer][ch] == -1: answer = self.fail[answer] return self.goto[answer][ch] # This function finds all occurrences of all words in text. def search_words(self, text): # Convert the text to lowercase to make search case insensitive text = text.lower() # Initialize current_state to 0 current_state = 0 # A dictionary to store the result. # Key here is the found word # Value is a list of all occurrences start index result = defaultdict(list) # Traverse the text through the built machine # to find all occurrences of words for i in range(len(text)): current_state = self.__find_next_state(current_state, text[i]) # If match not found, move to next state if self.out[current_state] == 0: continue # Match found, store the word in result dictionary for j in range(len(self.words)): if (self.out[current_state] & (1<<j)) > 0: word = self.words[j] # Start index of word is (i-len(word)+1) result[word].append(i-len(word)+1) # Return the final result dictionary return result # Driver code if __name__ == "__main__": words = ["he", "she", "hers", "his"] text = "ahishers" # Create an Object to initialize the Trie aho_chorasick = AhoCorasick(words) # Get the result result = aho_chorasick.search_words(text) # Print the result for word in result: for i in result[word]: print("Word", word, "appears from", i, "to", i+len(word)-1) # This code is contributed by Md Azharuddin
linear
linear
# Python program to calculate number of times # the pattern occurred in given string # Returns count of occurrences of "1(0+)1" def countPattern(s): length = len(s) oneSeen = False count = 0 # Initialize result for i in range(length): # Check if encountered '1' forms a valid # pattern as specified if (s[i] == '1' and oneSeen): if (s[i - 1] == '0'): count += 1 # if 1 encountered for first time # set oneSeen to 1 if (s[i] == '1' and oneSeen == 0): oneSeen = True # Check if there is any other character # other than '0' or '1'. If so then set # oneSeen to 0 to search again for new # pattern if (s[i] != '0' and s[i] != '1'): oneSeen = False return count # Driver code s = "100001abc101" print(countPattern(s)) # This code is contributed by Sachin Bisht
constant
linear
# Python3 program to find if a string follows # order defined by a given pattern CHAR_SIZE = 256 # Returns true if characters of str follow # order defined by a given ptr. def checkPattern(Str, pat): # Initialize all orders as -1 label = [-1] * CHAR_SIZE # Assign an order to pattern characters # according to their appearance in pattern order = 1 for i in range(len(pat)): # Give the pattern characters order label[ord(pat[i])] = order # Increment the order order += 1 # Now one by one check if string # characters follow above order last_order = -1 for i in range(len(Str)): if (label[ord(Str[i])] != -1): # If order of this character is less # than order of previous, return false if (label[ord(Str[i])] < last_order): return False # Update last_order for next iteration last_order = label[ord(Str[i])] # return that str followed pat return True # Driver Code if __name__ == '__main__': Str = "engineers rock" pattern = "gsr" print(checkPattern(Str, pattern)) # This code is contributed by himanshu77
constant
linear
# Python code for finding count # of string in a given 2D # character array. # utility function to search # complete string from any # given index of 2d array def internalSearch(ii, needle, row, col, hay, row_max, col_max): found = 0 if (row >= 0 and row <= row_max and col >= 0 and col <= col_max and needle[ii] == hay[row][col]): match = needle[ii] ii += 1 hay[row][col] = 0 if (ii == len(needle)): found = 1 else: # through Backtrack searching # in every directions found += internalSearch(ii, needle, row, col + 1, hay, row_max, col_max) found += internalSearch(ii, needle, row, col - 1, hay, row_max, col_max) found += internalSearch(ii, needle, row + 1, col, hay, row_max, col_max) found += internalSearch(ii, needle, row - 1, col, hay, row_max, col_max) hay[row][col] = match return found # Function to search the string in 2d array def searchString(needle, row, col,strr, row_count, col_count): found = 0 for r in range(row_count): for c in range(col_count): found += internalSearch(0, needle, r, c, strr, row_count - 1, col_count - 1) return found # Driver code needle = "MAGIC" inputt = ["BBABBM","CBMBBA","IBABBG", "GOZBBI","ABBBBC","MCIGAM"] strr = [0] * len(inputt) for i in range(len(inputt)): strr[i] = list(inputt[i]) print("count: ", searchString(needle, 0, 0, strr, len(strr), len(strr[0]))) # This code is contributed by SHUBHAMSINGH10
quadratic
quadratic
# Python3 program to check if we can # break a into four distinct strings. # Return if the given string can be # split or not. def check(s): # We can always break a of size 10 or # more into four distinct strings. if (len(s) >= 10): return True # Brute Force for i in range(1, len(s)): for j in range(i + 1, len(s)): for k in range(j + 1, len(s)): # Making 4 from the given s1 = s[0:i] s2 = s[i:j - i] s3 = s[j: k - j] s4 = s[k: len(s) - k] # Checking if they are distinct or not. if (s1 != s2 and s1 != s3 and s1 != s4 and s2 != s3 and s2 != s4 and s3 != s4): return True return False # Driver Code if __name__ == '__main__': str = "aaabb" print("Yes") if(check(str)) else print("NO") # This code is contributed # by SHUBHAMSINGH10
linear
np
# Python 3 program to split an alphanumeric # string using STL def splitString(str): alpha = "" num = "" special = "" for i in range(len(str)): if (str[i].isdigit()): num = num+ str[i] elif((str[i] >= 'A' and str[i] <= 'Z') or (str[i] >= 'a' and str[i] <= 'z')): alpha += str[i] else: special += str[i] print(alpha) print(num ) print(special) # Driver code if __name__ == "__main__": str = "geeks01$$for02geeks03!@!!" splitString(str) # This code is contributed by ita_c
linear
linear
# Python3 program to split a numeric # string in an Increasing # sequence if possible # Function accepts a string and # checks if string can be split. def split(Str) : Len = len(Str) # if there is only 1 number # in the string then # it is not possible to split it if (Len == 1) : print("Not Possible") return s1, s2 = "", "" for i in range((Len // 2) + 1) : flag = 0 # storing the substring from # 0 to i+1 to form initial # number of the increasing sequence s1 = Str[0 : i + 1] num1 = int(s1) num2 = num1 + 1 # convert string to integer # and add 1 and again convert # back to string s2 s2 = str(num2) k = i + 1 while (flag == 0) : l = len(s2) # if s2 is not a substring # of number than not possible if (k + l > Len) : flag = 1 break # if s2 is the next substring # of the numeric string if ((Str[k : k + l] == s2)) : flag = 0 # Increase num2 by 1 i.e the # next number to be looked for num2 += 1 k = k + l # check if string is fully # traversed then break if (k == Len) : break s2 = str(num2) l = len(s2) if (k + 1 > len) : # If next string doesnot occurs # in a given numeric string # then it is not possible flag = 1 break else : flag = 1 # if the string was fully traversed # and conditions were satisfied if (flag == 0) : print("Possible", s1) break # if conditions failed to hold elif (flag == 1 and i > (Len // 2) - 1) : print("Not Possible") break # Driver code Str = "99100" # Call the split function # for splitting the string split(Str) # This code is contributed by divyesh072019.
linear
quadratic
# Python3 Program to find number of way # to split string such that each partition # starts with distinct character with # maximum number of partitions. # Returns the number of we can split # the string def countWays(s): count = [0] * 26; # Finding the frequency of each # character. for x in s: count[ord(x) - ord('a')] = (count[ord(x) - ord('a')]) + 1; # making frequency of first character # of string equal to 1. count[ord(s[0]) - ord('a')] = 1; # Finding the product of frequency # of occurrence of each character. ans = 1; for i in range(26): if (count[i] != 0): ans *= count[i]; return ans; # Driver Code if __name__ == '__main__': s = "acbbcc"; print(countWays(s)); # This code is contributed by Rajput-Ji
constant
linear
# Python3 program to check if a can be splitted # into two strings such that one is divisible by 'a' # and other is divisible by 'b'. # Finds if it is possible to partition str # into two parts such that first part is # divisible by a and second part is divisible # by b. def findDivision(str, a, b): lenn = len(str) # Create an array of size lenn+1 and # initialize it with 0. # Store remainders from left to right # when divided by 'a' lr = [0] * (lenn + 1) lr[0] = (int(str[0]))%a for i in range(1, lenn): lr[i] = ((lr[i - 1] * 10) % a + \ int(str[i])) % a # Compute remainders from right to left # when divided by 'b' rl = [0] * (lenn + 1) rl[lenn - 1] = int(str[lenn - 1]) % b power10 = 10 for i in range(lenn - 2, -1, -1): rl[i] = (rl[i + 1] + int(str[i]) * power10) % b power10 = (power10 * 10) % b # Find a point that can partition a number for i in range(0, lenn - 1): # If split is not possible at this point if (lr[i] != 0): continue # We can split at i if one of the following # two is true. # a) All characters after str[i] are 0 # b) after str[i] is divisible by b, i.e., # str[i+1..n-1] is divisible by b. if (rl[i + 1] == 0): print("YES") for k in range(0, i + 1): print(str[k], end = "") print(",", end = " ") for i in range(i + 1, lenn): print(str[k], end = "") return print("NO") # Driver code str = "123" a, b = 12, 3 findDivision(str, a, b) # This code is contributed by SHUBHAMSINGH10
linear
linear
# Python program to check if a string can be splitted # into two strings such that one is divisible by 'a' # and other is divisible by 'b'. # Finds if it is possible to partition str # into two parts such that first part is # divisible by a and second part is divisible # by b. def findDivision(S, a, b): for i in range(len(S)-1): firstPart = S[0: i + 1] secondPart = S[i + 1:] if (int(firstPart) % a == 0 and int(secondPart) % b == 0): return firstPart + " " + secondPart return "-1" # Driver code Str = "125" a,b = 12,3 result = findDivision(Str, a, b) if (result == "-1"): print("NO") else: print("YES") print(result) # This code is contributed by shinjanpatra
constant
linear
# Python3 code to implement the approach # This code kind of uses sliding window technique. First # checking if string[0] and string[0..n-1] is divisible if # yes then return else run a loop from 1 to n-1 and check if # taking this (0-i)index number and (i+1 to n-1)index number # on our two declared variables if they are divisible by given two numbers respectively # in any iteration return them simply def stringPartition(s, a, b): # code here n = len(s) # if length is 1 not possible if (n == 1): return "-1" else: # Checking if number formed bt S[0] and S[1->n-1] is divisible a1 = int(s[0]) a2 = int(s[1]) multiplyer = 10 for i in range(2, n): a2 = a2 * multiplyer + int(s[i]) i = 1 if (a1 % a == 0 and a2 % b == 0): k1 = '1' * (s[0]) k2 = "" for j in range(1, n): k2 += s[j] return k1 + " " + k2 # return the numbers formed as string # from here by using sliding window technique we # will iterate and check for every i that if the # two current numbers formed are divisible if yes # return else form the two new numbers for next # iteration using sliding window technique q1 = 10 q2 = 1 for i in range(1, n - 1): q2 *= 10 while (i < n - 1): x = s[i] ad = int(x) a1 = a1 * q1 + ad a2 = a2 - q2 * ad if (a1 % a == 0 and a2 % b == 0): k1 = "" k2 = "" for j in range(i + 1): k1 += s[j] for j in range(i + 1, n): k2 += s[j] return k1 + " " + k2 q2 //= 10 i += 1 return "-1" # Driver code str = "123" a = 12 b = 3 result = stringPartition(str, a, b) if (result == "-1"): print("NO") else: print("YES") print(result) # This code is contributed by phasing17
constant
linear
# Python3 program to count ways to divide # a string in two parts a and b such that # b/pow(10, p) == a def calculate( N ): length = len(N) l = int((length) / 2) count = 0 for i in range(l + 1): print(i) # substring representing int a s = N[0: 0 + i] # no of digits in a l1 = len(s) print(s,l1) # consider only most significant # l1 characters of remaining # string for int b t = N[i: l1 + i] # if any of a or b contains # leading 0s discard this try: if s[0] == '0' or t[0] == '0': continue except: continue # if both are equal if s == t: count+=1 print(i,N[i],count) return count # driver code to test above function N = str("2202200") print(calculate(N)) # This code is contributed by "Sharad_Bhardwaj".
linear
quadratic
# Python program to print n equal parts of string # Function to print n equal parts of string def divideString(string, n): str_size = len(string) # Check if string can be divided in n equal parts if str_size % n != 0: print ("Invalid Input: String size is not divisible by n") return # Calculate the size of parts to find the division points part_size = str_size/n k = 0 for i in string: if k % part_size == 0: print () print (i,end='') k += 1 # Driver program to test the above function # Length of string is 28 string = "a_simple_divide_string_quest" # Print 4 equal parts of the string divideString(string, 4) # This code is contributed by Bhavya Jain
constant
linear
# Python code for the same approach def divide(Str,n): if (len(Str) % n != 0): print("Invalid Input: String size",end="") print(" is not divisible by n") return parts = len(Str) // n start = 0 while (start < len(Str)): print(Str[start: start + parts]) start += parts # if(start < len(Str)) cout << endl; to ignore # final new line # driver code Str = "a_simple_divide_string_quest" divide(Str, 4) # This code is contributed By shinjanpatra
linear
linear
# Python program to find minimum breaks needed # to break a string in dictionary words. import sys class TrieNode: def __init__(self): self.endOfTree = False self.children = [None for i in range(26)] root = TrieNode() minWordBreak = sys.maxsize # If not present, inserts a key into the trie # If the key is the prefix of trie node, just # marks leaf node def insert(key): global root,minWordBreak length = len(key) pcrawl = root for i in range(length): index = ord(key[i])- ord('a') if(pcrawl.children[index] == None): pcrawl.children[index] = TrieNode() pcrawl = pcrawl.children[index] # mark last node as leaf pcrawl.endOfTree = True # function break the string into minimum cut # such the every substring after breaking # in the dictionary. def _minWordBreak(key): global minWordBreak minWordBreak = sys.maxsize minWordBreakUtil(root, key, 0, sys.maxsize, 0) def minWordBreakUtil(node,key,start,min_Break,level): global minWordBreak,root pCrawl = node # base case, update minimum Break if (start == len(key)): min_Break = min(min_Break, level - 1) if(min_Break<minWordBreak): minWordBreak = min_Break return # traverse given key(pattern) for i in range(start,len(key)): index = ord(key[i]) - ord('a') if (pCrawl.children[index]==None): return # if we find a condition were we can # move to the next word in a trie # dictionary if (pCrawl.children[index].endOfTree): minWordBreakUtil(root, key, i + 1,min_Break, level + 1) pCrawl = pCrawl.children[index] # Driver code keys=["cat", "mat", "ca", "ma", "at", "c", "dog", "og", "do" ] for i in range(len(keys)): insert(keys[i]) _minWordBreak("catmatat") print(minWordBreak) # This code is contributed by shinjanpatra
linear
quadratic
class Solution(object): def wordBreak(self, s, wordDict): """ Author : @amitrajitbose :type s: str :type wordDict: List[str] :rtype: bool """ """CREATING THE TRIE CLASS""" class TrieNode(object): def __init__(self): self.children = [] # will be of size = 26 self.isLeaf = False def getNode(self): p = TrieNode() # new trie node p.children = [] for i in range(26): p.children.append(None) p.isLeaf = False return p def insert(self, root, key): key = str(key) pCrawl = root for i in key: index = ord(i)-97 if(pCrawl.children[index] == None): # node has to be initialised pCrawl.children[index] = self.getNode() pCrawl = pCrawl.children[index] pCrawl.isLeaf = True # marking end of word def search(self, root, key): # print("Searching %s" %key) #DEBUG pCrawl = root for i in key: index = ord(i)-97 if(pCrawl.children[index] == None): return False pCrawl = pCrawl.children[index] if(pCrawl and pCrawl.isLeaf): return True def checkWordBreak(strr, root): n = len(strr) if(n == 0): return True for i in range(1, n+1): if(root.search(root, strr[:i]) and checkWordBreak(strr[i:], root)): return True return False """IMPLEMENT SOLUTION""" root = TrieNode().getNode() for w in wordDict: root.insert(root, w) out = checkWordBreak(s, root) if(out): return "Yes" else: return "No" print(Solution().wordBreak("thequickbrownfox", ["the", "quick", "fox", "brown"])) print(Solution().wordBreak("bedbathandbeyond", [ "bed", "bath", "bedbath", "and", "beyond"])) print(Solution().wordBreak("bedbathandbeyond", [ "teddy", "bath", "bedbath", "and", "beyond"])) print(Solution().wordBreak("bedbathandbeyond", [ "bed", "bath", "bedbath", "and", "away"]))
quadratic
quadratic
# A recursive program to print all possible # partitions of a given string into dictionary # words # A utility function to check whether a word # is present in dictionary or not. An array of # strings is used for dictionary. Using array # of strings for dictionary is definitely not # a good idea. We have used for simplicity of # the program def dictionaryContains(word): dictionary = {"mobile", "samsung", "sam", "sung", "man", "mango", "icecream", "and", "go", "i", "love", "ice", "cream"} return word in dictionary # Prints all possible word breaks of given string def wordBreak(string): # Last argument is prefix wordBreakUtil(string, len(string), "") # Result store the current prefix with spaces # between words def wordBreakUtil(string, n, result): # Process all prefixes one by one for i in range(1, n + 1): # Extract substring from 0 to i in prefix prefix = string[:i] # If dictionary contains this prefix, then # we check for remaining string. Otherwise # we ignore this prefix (there is no else for # this if) and try next if dictionaryContains(prefix): # If no more elements are there, print it if i == n: # Add this element to previous prefix result += prefix print(result) return wordBreakUtil(string[i:], n - i, result+prefix+" ") # Driver Code if __name__ == "__main__": print("First Test:") wordBreak("iloveicecreamandmango") print("\nSecond Test:") wordBreak("ilovesamsungmobile") # This code is contributed by harshitkap00r
quadratic
np
# Python3 program to # mark balanced and # unbalanced parenthesis. def identifyParenthesis(a): st = [] # run the loop upto # end of the string for i in range (len(a)): # if a[i] is opening # bracket then push # into stack if (a[i] == '('): st.append(a[i]) # if a[i] is closing bracket ')' elif (a[i] == ')'): # If this closing bracket # is unmatched if (len(st) == 0): a = a.replace(a[i], "-1", 1) else: # replace all opening brackets with 0 # and closing brackets with 1 a = a.replace(a[i], "1", 1) a = a.replace(st[-1], "0", 1) st.pop() # if stack is not empty # then pop out all # elements from it and # replace -1 at that # index of the string while (len(st) != 0): a = a.replace(st[-1], 1, "-1"); st.pop() # print final string print(a) # Driver code if __name__ == "__main__": st = "(a))" identifyParenthesis(st) # This code is contributed by Chitranayal
linear
linear
# Python 3 code to calculate the minimum cost # to make the given parentheses balanced def costToBalance(s): if (len(s) == 0): print(0) # To store absolute count of # balanced and unbalanced parenthesis ans = 0 # o(open bracket) stores count of '(' and # c(close bracket) stores count of ')' o = 0 c = 0 for i in range(len(s)): if (s[i] == '('): o += 1 if (s[i] == ')'): c += 1 if (o != c): return -1 a = [0 for i in range(len(s))] if (s[0] == '('): a[0] = 1 else: a[0] = -1 if (a[0] < 0): ans += abs(a[0]) for i in range(1, len(s)): if (s[i] == '('): a[i] = a[i - 1] + 1 else: a[i] = a[i - 1] - 1 if (a[i] < 0): ans += abs(a[i]) return ans # Driver code if __name__ == '__main__': s = ")))(((" print(costToBalance(s)) s = "))((" print(costToBalance(s)) # This code is contributed by # Surendra_Gangwar
linear
linear
# Python 3 code to check balanced # parentheses with O(1) space. # Function1 to match closing bracket def matchClosing(X, start, end, open, close): c = 1 i = start + 1 while (i <= end): if (X[i] == open): c += 1 elif (X[i] == close): c -= 1 if (c == 0): return i i += 1 return i # Function1 to match opening bracket def matchingOpening(X, start, end, open, close): c = -1 i = end - 1 while (i >= start): if (X[i] == open): c += 1 elif (X[i] == close): c -= 1 if (c == 0): return i i -= 1 return -1 # Function to check balanced # parentheses def isBalanced(X, n): for i in range(n): # Handling case of opening # parentheses if (X[i] == '('): j = matchClosing(X, i, n - 1, '(', ')') elif (X[i] == '{'): j = matchClosing(X, i, n - 1, '{', '}') elif (X[i] == '['): j = matchClosing(X, i, n - 1, '[', ']') # Handling case of closing # parentheses else : if (X[i] == ')'): j = matchingOpening(X, 0, i, '(', ')') elif (X[i] == '}'): j = matchingOpening(X, 0, i, '{', '}') elif (X[i] == ']'): j = matchingOpening(X, 0, i, '[', ']') # If corresponding matching opening # parentheses doesn't lie in given # interval return 0 if (j < 0 or j >= i): return False # else continue continue # If corresponding closing parentheses # doesn't lie in given interval, return 0 if (j >= n or j < 0): return False # if found, now check for each opening and # closing parentheses in this interval start = i end = j for k in range(start + 1, end) : if (X[k] == '(') : x = matchClosing(X, k, end, '(', ')') if (not(k < x and x < end)): return False elif (X[k] == ')'): x = matchingOpening(X, start, k, '(', ')') if (not(start < x and x < k)): return False if (X[k] == '{'): x = matchClosing(X, k, end, '{', '}') if (not(k < x and x < end)): return False elif (X[k] == '}'): x = matchingOpening(X, start, k, '{', '}') if (not(start < x and x < k)): return False if (X[k] == '['): x = matchClosing(X, k, end, '[', ']') if (not(k < x and x < end)): return False elif (X[k] == ']'): x = matchingOpening(X, start, k, '[', ']') if (not(start < x and x < k)): return False return True # Driver Code if __name__ == "__main__": X = "[()]()" n = 6 if (isBalanced(X, n)): print("Yes") else: print("No") Y = "[[()]])" n = 7 if (isBalanced(Y, n)): print("Yes") else: print("No") # This code is contributed by ita_c
constant
cubic
# Python3 program to check for # balanced brackets. # function to check if # brackets are balanced def areBracketsBalanced(expr): stack = [] # Traversing the Expression for char in expr: if char in ["(", "{", "["]: # Push the element in the stack stack.append(char) else: # IF current character is not opening # bracket, then it must be closing. # So stack cannot be empty at this point. if not stack: return False current_char = stack.pop() if current_char == '(': if char != ")": return False if current_char == '{': if char != "}": return False if current_char == '[': if char != "]": return False # Check Empty Stack if stack: return False return True # Driver Code if __name__ == "__main__": expr = "{()}[]" # Function call if areBracketsBalanced(expr): print("Balanced") else: print("Not Balanced") # This code is contributed by AnkitRai01 and improved # by Raju Pitta
linear
linear
# Python3 program to find length of # the longest balanced subsequence def maxLength(s, n): dp = [[0 for i in range(n)] for i in range(n)] # Considering all balanced # substrings of length 2 for i in range(n - 1): if (s[i] == '(' and s[i + 1] == ')'): dp[i][i + 1] = 2 # Considering all other substrings for l in range(2, n): i = -1 for j in range(l, n): i += 1 if (s[i] == '(' and s[j] == ')'): dp[i][j] = 2 + dp[i + 1][j - 1] for k in range(i, j): dp[i][j] = max(dp[i][j], dp[i][k] + dp[k + 1][j]) return dp[0][n - 1] # Driver Code s = "()(((((()" n = len(s) print(maxLength(s, n)) # This code is contributed # by sahishelangia
quadratic
quadratic
# Python3 program to find length of # the longest balanced subsequence def maxLength(s, n): # As it's subsequence - assuming first # open brace would map to a first close # brace which occurs after the open brace # to make subsequence balanced and second # open brace would map to second close # brace and so on. # Variable to count all the open brace # that does not have the corresponding # closing brace. invalidOpenBraces = 0; # To count all the close brace that does # not have the corresponding open brace. invalidCloseBraces = 0; # Iterating over the String for i in range(n): if( s[i] == '(' ): # Number of open braces that # hasn't been closed yet. invalidOpenBraces += 1 else: if(invalidOpenBraces == 0): # Number of close braces that # cannot be mapped to any open # brace. invalidCloseBraces += 1 else: # Mapping the ith close brace # to one of the open brace. invalidOpenBraces -= 1 return ( n - ( invalidOpenBraces + invalidCloseBraces)) # Driver Code s = "()(((((()" n = len(s) print(maxLength(s, n))
constant
linear
# Python3 program to determine whether # given expression is balanced/ parenthesis # expression or not. # Function to check if two brackets are # matching or not. def isMatching(a, b): if ((a == '{' and b == '}') or (a == '[' and b == ']') or (a == '(' and b == ')') or a == 'X'): return 1 return 0 # Recursive function to check if given # expression is balanced or not. def isBalanced(s, ele, ind): # Base case. # If the string is balanced then all the # opening brackets had been popped and # stack should be empty after string is # traversed completely. if (ind == len(s)): if len(ele) == 0: return True else: return False # Variable to store element at the top # of the stack. # char topEle; # Variable to store result of # recursive call. # int res; # Case 1: When current element is an # opening bracket then push that # element in the stack. if (s[ind] == '{' or s[ind] == '(' or s[ind] == '['): ele.append(s[ind]) return isBalanced(s, ele, ind + 1) # Case 2: When current element is a closing # bracket then check for matching bracket # at the top of the stack. elif (s[ind] == '}' or s[ind] == ')' or s[ind] == ']'): # If stack is empty then there is no matching # opening bracket for current closing bracket # and the expression is not balanced. if (len(ele) == 0): return 0 topEle = ele[-1] ele.pop() # Check bracket is matching or not. if (isMatching(topEle, s[ind]) == 0): return 0 return isBalanced(s, ele, ind + 1) # Case 3: If current element is 'X' then check # for both the cases when 'X' could be opening # or closing bracket. elif (s[ind] == 'X'): tmp = ele tmp.append(s[ind]) res = isBalanced(s, tmp, ind + 1) if (res): return 1 if (len(ele) == 0): return 0 ele.pop() return isBalanced(s, ele, ind + 1) # Driver Code s = "{(X}[]" ele = [] # Check if the length of the given string is even if(len(s)%2==0): if (isBalanced(s, ele, 0)): print("Balanced") else: print("Not Balanced") # If the length is not even, then the string is not balanced else: print("Not Balanced") # This code is contributed by divyeshrabadiya07
linear
np
# Python3 program to evaluate value # of an expression. import math as mt def evaluateBoolExpr(s): n = len(s) # Traverse all operands by jumping # a character after every iteration. for i in range(0, n - 2, 2): # If operator next to current # operand is AND.''' if (s[i + 1] == "A"): if (s[i + 2] == "0" or s[i] == "0"): s[i + 2] = "0" else: s[i + 2] = "1" # If operator next to current # operand is OR. else if (s[i + 1] == "B"): if (s[i + 2] == "1" or s[i] == "1"): s[i + 2] = "1" else: s[i + 2] = "0" # If operator next to current operand # is XOR (Assuming a valid input) else: if (s[i + 2] == s[i]): s[i + 2] = "0" else: s[i + 2] = "1" return ord(s[n - 1]) - ord("0") # Driver code s = "1C1B1B0A0" string=[s[i] for i in range(len(s))] print(evaluateBoolExpr(string)) # This code is contributed # by mohit kumar 29
linear
linear
# Python code to implement the approach def maxDepth(s): count = 0 st = [] for i in range(len(s)): if (s[i] == '('): st.append(i) # pushing the bracket in the stack elif (s[i] == ')'): if (count < len(st)): count = len(st) # keeping track of the parenthesis and storing # it before removing it when it gets balanced st.pop() return count # Driver program s = "( ((X)) (((Y))) )" print(maxDepth(s)) # This code is contributed by shinjanpatra
constant
linear
# A Python program to find the maximum depth of nested # parenthesis in a given expression # function takes a string and returns the # maximum depth nested parenthesis def maxDepth(S): current_max = 0 max = 0 n = len(S) # Traverse the input string for i in range(n): if S[i] == '(': current_max += 1 if current_max > max: max = current_max else if S[i] == ')': if current_max > 0: current_max -= 1 else: return -1 # finally check for unbalanced string if current_max != 0: return -1 return max # Driver program s = "( ((X)) (((Y))) )" print (maxDepth(s)) # This code is contributed by BHAVYA JAIN
constant
linear
# Python3 Program to find all combinations of Non- # overlapping substrings formed from given # string # find all combinations of non-overlapping # substrings formed by input string str # index – index of the next character to # be processed # out - output string so far def findCombinations(string, index, out): if index == len(string): print(out) for i in range(index, len(string), 1): # append substring formed by str[index, # i] to output string findCombinations(string, i + 1, out + "(" + string[index:i + 1] + ")") # Driver Code if __name__ == "__main__": # input string string = "abcd" findCombinations(string, 0, "") # This code is contributed by # sanjeev2552
quadratic
quadratic
# Method to find an equal index def findIndex(str): l = len(str) open = [0] * (l + 1) close = [0] * (l + 1) index = -1 open[0] = 0 close[l] = 0 if (str[0]=='('): open[1] = 1 if (str[l - 1] == ')'): close[l - 1] = 1 # Store the number of # opening brackets # at each index for i in range(1, l): if (str[i] == '('): open[i + 1] = open[i] + 1 else: open[i + 1] = open[i] # Store the number # of closing brackets # at each index for i in range(l - 2, -1, -1): if ( str[i] == ')'): close[i] = close[i + 1] + 1 else: close[i] = close[i + 1] # check if there is no # opening or closing brackets if (open[l] == 0): return len if (close[0] == 0): return 0 # check if there is any # index at which both # brackets are equal for i in range(l + 1): if (open[i] == close[i]): index = i return index # Driver Code str = "(()))(()()())))" print(findIndex(str)) # This code is contributed # by ChitraNayal
linear
linear
# Method to find an equal index def findIndex(str): cnt_close = 0 l = len(str) for i in range(1, l): if(str[i] == ')'): cnt_close = cnt_close + 1 for i in range(1, l): if(cnt_close == i): return i # If no opening brackets return l # Driver Code str = "(()))(()()())))" print(findIndex(str)) # This code is contributed by Aditya Kumar (adityakumar129)
constant
linear
# Python3 program to check if two expressions # evaluate to same. MAX_CHAR = 26; # Return local sign of the operand. For example, # in the expr a-b-(c), local signs of the operands # are +a, -b, +c def adjSign(s, i): if (i == 0): return True; if (s[i - 1] == '-'): return False; return True; # Evaluate expressions into the count vector of # the 26 alphabets.If add is True, then add count # to the count vector of the alphabets, else remove # count from the count vector. def eval(s, v, add): # stack stores the global sign # for operands. stk = [] stk.append(True); # + means True # global sign is positive initially i = 0; while (i < len(s)): if (s[i] == '+' or s[i] == '-'): i += 1 continue; if (s[i] == '('): # global sign for the bracket is # pushed to the stack if (adjSign(s, i)): stk.append(stk[-1]); else: stk.append(not stk[-1]); # global sign is popped out which # was pushed in for the last bracket elif (s[i] == ')'): stk.pop(); else: # global sign is positive (we use different # values in two calls of functions so that # we finally check if all vector elements # are 0. if (stk[-1]): v[ord(s[i]) - ord('a')] += (1 if add else -1) if adjSign(s, i) else (-1 if add else 1) # global sign is negative here else: v[ord(s[i]) - ord('a')] += (-1 if add else 1) if adjSign(s, i) else (1 if add else -1) i += 1 # Returns True if expr1 and expr2 represent # same expressions def areSame(expr1, expr2): # Create a vector for all operands and # initialize the vector as 0. v = [0 for i in range(MAX_CHAR)]; # Put signs of all operands in expr1 eval(expr1, v, True); # Subtract signs of operands in expr2 eval(expr2, v, False); # If expressions are same, vector must # be 0. for i in range(MAX_CHAR): if (v[i] != 0): return False; return True; # Driver Code if __name__=='__main__': expr1 = "-(a+b+c)" expr2 = "-a-b-c"; if (areSame(expr1, expr2)): print("Yes"); else: print("No"); # This code is contributed by rutvik_56.
linear
linear
# Python3 Program to check whether valid # expression is redundant or not # Function to check redundant brackets # in a balanced expression def checkRedundancy(Str): # create a stack of characters st = [] # Iterate through the given expression for ch in Str: # if current character is close # parenthesis ')' if (ch == ')'): top = st[-1] st.pop() # If immediate pop have open parenthesis # '(' duplicate brackets found flag = True while (top != '('): # Check for operators in expression if (top == '+' or top == '-' or top == '*' or top == '/'): flag = False # Fetch top element of stack top = st[-1] st.pop() # If operators not found if (flag == True): return True else: st.append(ch) # append open parenthesis '(', # operators and operands to stack return False # Function to check redundant brackets def findRedundant(Str): ans = checkRedundancy(Str) if (ans == True): print("Yes") else: print("No") # Driver code if __name__ == '__main__': Str = "((a+b))" findRedundant(Str) # This code is contributed by PranchalK
linear
linear
# Python3 program to find sum of given # array of string type in integer form # Function to find the sum of given array def calculateSum(arr, n): # if string is empty if (n == 0): return 0 s = arr[0] # stoi function to convert # string into integer value = int(s) sum = value for i in range(2 , n, 2): s = arr[i] # stoi function to convert # string into integer value = int(s) # Find operator operation = arr[i - 1][0] # If operator is equal to '+', # add value in sum variable # else subtract if (operation == '+'): sum += value else: sum -= value return sum # Driver Function arr = ["3", "+", "4", "-","7", "+", "13"] n = len(arr) print(calculateSum(arr, n)) # This code is contributed by Smitha
constant
linear
# Python3 implementation to print the bracket number # function to print the bracket number def printBracketNumber(exp, n): # used to print the bracket number # for the left bracket left_bnum = 1 # used to obtain the bracket number # for the right bracket right_bnum = list() # traverse the given expression 'exp' for i in range(n): # if current character is a left bracket if exp[i] == '(': # print 'left_bnum', print(left_bnum, end = " ") # push 'left_bnum' on to the stack 'right_bnum' right_bnum.append(left_bnum) # increment 'left_bnum' by 1 left_bnum += 1 # else if current character is a right bracket elif exp[i] == ')': # print the top element of stack 'right_bnum' # it will be the right bracket number print(right_bnum[-1], end = " ") # pop the top element from the stack right_bnum.pop() # Driver Code if __name__ == "__main__": exp = "(a+(b*c))+(d/e)" n = len(exp) printBracketNumber(exp, n) # This code is contributed by # sanjeev2552
linear
linear
# Python program to find index of closing # bracket for a given opening bracket. from collections import deque def getIndex(s, i): # If input is invalid. if s[i] != '[': return -1 # Create a deque to use it as a stack. d = deque() # Traverse through all elements # starting from i. for k in range(i, len(s)): # Pop a starting bracket # for every closing bracket if s[k] == ']': d.popleft() # Push all starting brackets elif s[k] == '[': d.append(s[i]) # If deque becomes empty if not d: return k return -1 # Driver code to test above method. def test(s, i): matching_index = getIndex(s, i) print(s + ", " + str(i) + ": " + str(matching_index)) def main(): test("[ABC[23]][89]", 0) # should be 8 test("[ABC[23]][89]", 4) # should be 7 test("[ABC[23]][89]", 9) # should be 12 test("[ABC[23]][89]", 1) # No matching bracket if __name__ == "__main__": main()
linear
linear
# Python3 program to construct string from binary tree # A binary tree node has data, pointer to left # child and a pointer to right child class Node: def __init__(self, data): self.data = data self.left = None self.right = None # Function to construct string from binary tree def treeToString(root: Node, string: list): # base case if root is None: return # push the root data as character string.append(str(root.data)) # if leaf node, then return if not root.left and not root.right: return # for left subtree string.append('(') treeToString(root.left, string) string.append(')') # only if right child is present to # avoid extra parenthesis if root.right: string.append('(') treeToString(root.right, string) string.append(')') # Driver Code if __name__ == "__main__": # Let us construct below tree # 1 # / \ # 2 3 # / \ \ # 4 5 6 root = Node(1) root.left = Node(2) root.right = Node(3) root.left.left = Node(4) root.left.right = Node(5) root.right.right = Node(6) string = [] treeToString(root, string) print(''.join(string)) # This code is contributed by # sanjeev2552
linear
linear
# Python3 program to conStruct a # binary tree from the given String # Helper class that allocates a new node class newNode: def __init__(self, data): self.data = data self.left = self.right = None # This function is here just to test def preOrder(node): if (node == None): return print(node.data, end=' ') preOrder(node.left) preOrder(node.right) # function to return the index of # close parenthesis def findIndex(Str, si, ei): if (si > ei): return -1 # Inbuilt stack s = [] for i in range(si, ei + 1): # if open parenthesis, push it if (Str[i] == '('): s.append(Str[i]) # if close parenthesis elif (Str[i] == ')'): if (s[-1] == '('): s.pop(-1) # if stack is empty, this is # the required index if len(s) == 0: return i # if not found return -1 return -1 # function to conStruct tree from String def treeFromString(Str, si, ei): # Base case if (si > ei): return None # new root root = newNode(ord(Str[si]) - ord('0')) index = -1 # if next char is '(' find the # index of its complement ')' if (si + 1 <= ei and Str[si + 1] == '('): index = findIndex(Str, si + 1, ei) # if index found if (index != -1): # call for left subtree root.left = treeFromString(Str, si + 2, index - 1) # call for right subtree root.right = treeFromString(Str, index + 2, ei - 1) return root # Driver Code if __name__ == '__main__': Str = "4(2(3)(1))(6(5))" root = treeFromString(Str, 0, len(Str) - 1) preOrder(root) # This code is contributed by pranchalK
linear
quadratic
class newNode: def __init__(self, data): self.data = data self.left = self.right = None def preOrder(node): if (node == None): return print(node.data, end=" ") preOrder(node.left) preOrder(node.right) def treeFromStringHelper(si, ei, arr, root): if si[0] >= ei: return None if arr[si[0]] == "(": if arr[si[0]+1] != ")": if root.left is None: if si[0] >= ei: return new_root = newNode(arr[si[0]+1]) root.left = new_root si[0] += 2 treeFromStringHelper(si, ei, arr, new_root) else: si[0] += 2 if root.right is None: if si[0] >= ei: return if arr[si[0]] != "(": si[0] += 1 return new_root = newNode(arr[si[0]+1]) root.right = new_root si[0] += 2 treeFromStringHelper(si, ei, arr, new_root) else: return if arr[si[0]] == ")": if si[0] >= ei: return si[0] += 1 return return def treeFromString(string): root = newNode(string[0]) if len(string) > 1: si = [1] ei = len(string)-1 treeFromStringHelper(si, ei, string, root) return root # Driver Code if __name__ == '__main__': Str = "4(2(3)(1))(6(5))" root = treeFromString(Str) preOrder(root) # This code is contributed by dheerajalimchandani
linear
quadratic
# Simple Python3 program to convert # all substrings from decimal to given base. import math def substringConversions(s, k, b): l = len(s); for i in range(l): if((i + k) < l + 1): # Saving substring in sub sub = s[i : i + k]; # Evaluating decimal for current # substring and printing it. sum, counter = 0, 0; for i in range(len(sub) - 1, -1, -1): sum = sum + ((ord(sub[i]) - ord('0')) * pow(b, counter)); counter += 1; print(sum , end = " "); # Driver code s = "12212"; b, k = 3, 3; substringConversions(s, b, k); # This code is contributed # by Princi Singh
linear
quadratic
# Simple Python3 program to convert all # substrings from decimal to given base. import math as mt def substringConversions(str1, k, b): for i in range(0, len(str1) - k + 1): # Saving substring in sub sub = str1[i:k + i] # Evaluating decimal for current # substring and printing it. Sum = 0 counter = 0 for i in range(len(sub) - 1, -1, -1): Sum = (Sum + ((ord(sub[i]) - ord('0')) * pow(b, counter))) counter += 1 print(Sum, end = " ") # Driver code str1 = "12212" b = 3 k = 3 substringConversions(str1, b, k) # This code is contributed by # Mohit Kumar 29
linear
linear
# Python3 program to demonstrate above steps # of binary fractional to decimal conversion # Function to convert binary fractional # to decimal def binaryToDecimal(binary, length) : # Fetch the radix point point = binary.find('.') # Update point if not found if (point == -1) : point = length intDecimal = 0 fracDecimal = 0 twos = 1 # Convert integral part of binary # to decimal equivalent for i in range(point-1, -1, -1) : # Subtract '0' to convert # character into integer intDecimal += ((ord(binary[i]) - ord('0')) * twos) twos *= 2 # Convert fractional part of binary # to decimal equivalent twos = 2 for i in range(point + 1, length): fracDecimal += ((ord(binary[i]) - ord('0')) / twos); twos *= 2.0 # Add both integral and fractional part ans = intDecimal + fracDecimal return ans # Driver code : if __name__ == "__main__" : n = "110.101" print(binaryToDecimal(n, len(n))) n = "101.1101" print(binaryToDecimal(n, len(n))) # This code is contributed # by aishwarya.27
linear
linear
# Python3 program to convert fractional # decimal to binary number # Function to convert decimal to binary # upto k-precision after decimal point def decimalToBinary(num, k_prec) : binary = "" # Fetch the integral part of # decimal number Integral = int(num) # Fetch the fractional part # decimal number fractional = num - Integral # Conversion of integral part to # binary equivalent while (Integral) : rem = Integral % 2 # Append 0 in binary binary += str(rem); Integral //= 2 # Reverse string to get original # binary equivalent binary = binary[ : : -1] # Append point before conversion # of fractional part binary += '.' # Conversion of fractional part # to binary equivalent while (k_prec) : # Find next bit in fraction fractional *= 2 fract_bit = int(fractional) if (fract_bit == 1) : fractional -= fract_bit binary += '1' else : binary += '0' k_prec -= 1 return binary # Driver code if __name__ == "__main__" : n = 4.47 k = 3 print(decimalToBinary(n, k)) n = 6.986 k = 5 print(decimalToBinary(n, k)) # This code is contributed by Ryuga
linear
linear
# Python3 implementation to convert # a sentence into its equivalent # mobile numeric keypad sequence # Function which computes the # sequence def printSequence(arr, input): # length of input string n = len(input) output = "" for i in range(n): # checking for space if(input[i] == ' '): output = output + "0" else: # calculating index for each # character position = ord(input[i]) - ord('A') output = output + arr[position] # output sequence return output # Driver code str = ["2", "22", "222", "3", "33", "333", "4", "44", "444", "5", "55", "555", "6", "66", "666", "7", "77", "777", "7777", "8", "88", "888", "9", "99", "999", "9999"] input = "GEEKSFORGEEKS" print(printSequence(str, input)) # This code is contributed by upendra bartwal
linear
linear
# Python Program for above implementation # Function to check is it possible to convert # first string into another string or not. def isItPossible(str1, str2, m, n): # To Check Length of Both String is Equal or Not if (m != n): return False # To Check Frequency of A's and B's are # equal in both strings or not. if str1.count('A') != str2.count('A') \ or str1.count('B') != str2.count('B'): return False # Start traversing for i in range(m): if (str1[i] != '#'): for j in range(n): # To Check no two elements cross each other. if ((str2[j] != str1[i]) and str2[j] != '#'): return False if (str2[j] == str1[i]): str2[j] = '#' # To Check Is it Possible to Move # towards Left or not. if (str1[i] == 'A' and i < j): return False # To Check Is it Possible to Move # towards Right or not. if (str1[i] == 'B' and i > j): return False break return True # Drivers code str1 = "A#B#" str2 = "A##B" m = len(str1) n = len(str2) str1 = list(str1) str2 = list(str2) if(isItPossible(str1, str2, m, n)): print("Yes") else: print("No") # This code is contributed by ankush_953
linear
quadratic
# Python 3 Program to convert str1 to # str2 in exactly k operations # Returns true if it is possible to convert # str1 to str2 using k operations. def isConvertible(str1, str2, k): # Case A (i) if ((len(str1) + len(str2)) < k): return True # finding common length of both string commonLength = 0 for i in range(0, min(len(str1), len(str2)), 1): if (str1[i] == str2[i]): commonLength += 1 else: break # Case A (ii)- if ((k - len(str1) - len(str2) + 2 * commonLength) % 2 == 0): return True # Case B- return False # Driver Code if __name__ == '__main__': str1 = "geek" str2 = "geek" k = 7 if (isConvertible(str1, str2, k)): print("Yes") else: print("No") str1 = "geeks" str2 = "geek" k = 5 if (isConvertible(str1, str2, k)): print("Yes") else: print("No") # This code is contributed by # Sanjit_Prasad
constant
linear
# Python3 program to convert # decimal number to roman numerals ls=[1000,900,500,400,100,90,50,40,10,9,5,4,1] dict={1:"I",4:"IV",5:"V",9:"IX",10:"X",40:"XL",50:"L",90:"XC",100:"C",400:"CD",500:"D",900:"CM",1000:"M"} ls2=[] # Function to convert decimal to Roman Numerals def func(no,res): for i in range(0,len(ls)): if no in ls: res=dict[no] rem=0 break if ls[i]<no: quo=no//ls[i] rem=no%ls[i] res=res+dict[ls[i]]*quo break ls2.append(res) if rem==0: pass else: func(rem,"") # Driver code if __name__ == "__main__": func(3549, "") print("".join(ls2)) # This code is contributed by # VIKAS CHOUDHARY(vikaschoudhary344)
constant
linear
# Python3 program for above approach # Function to calculate roman equivalent def intToRoman(num): # Storing roman values of digits from 0-9 # when placed at different places m = ["", "M", "MM", "MMM"] c = ["", "C", "CC", "CCC", "CD", "D", "DC", "DCC", "DCCC", "CM "] x = ["", "X", "XX", "XXX", "XL", "L", "LX", "LXX", "LXXX", "XC"] i = ["", "I", "II", "III", "IV", "V", "VI", "VII", "VIII", "IX"] # Converting to roman thousands = m[num // 1000] hundreds = c[(num % 1000) // 100] tens = x[(num % 100) // 10] ones = i[num % 10] ans = (thousands + hundreds + tens + ones) return ans # Driver code if __name__ == "__main__": number = 3549 print(intToRoman(number)) # This code is contributed by rutvik_56
constant
linear
# Python 3 program to convert Decimal # number to Roman numbers. import math def integerToRoman(A): romansDict = \ { 1: "I", 5: "V", 10: "X", 50: "L", 100: "C", 500: "D", 1000: "M", 5000: "G", 10000: "H" } div = 1 while A >= div: div *= 10 div //= 10 res = "" while A: # main significant digit extracted # into lastNum lastNum = (A // div) if lastNum <= 3: res += (romansDict[div] * lastNum) elif lastNum == 4: res += (romansDict[div] + romansDict[div * 5]) elif 5 <= lastNum <= 8: res += (romansDict[div * 5] + (romansDict[div] * (lastNum - 5))) elif lastNum == 9: res += (romansDict[div] + romansDict[div * 10]) A = math.floor(A % div) div //= 10 return res # Driver code print("Roman Numeral of Integer is:" + str(integerToRoman(3549)))
constant
linear
# Python program to convert Roman Numerals # to Numbers # This function returns value of each Roman symbol def value(r): if (r == 'I'): return 1 if (r == 'V'): return 5 if (r == 'X'): return 10 if (r == 'L'): return 50 if (r == 'C'): return 100 if (r == 'D'): return 500 if (r == 'M'): return 1000 return -1 def romanToDecimal(str): res = 0 i = 0 while (i < len(str)): # Getting value of symbol s[i] s1 = value(str[i]) if (i + 1 < len(str)): # Getting value of symbol s[i + 1] s2 = value(str[i + 1]) # Comparing both values if (s1 >= s2): # Value of current symbol is greater # or equal to the next symbol res = res + s1 i = i + 1 else: # Value of current symbol is greater # or equal to the next symbol res = res + s2 - s1 i = i + 2 else: res = res + s1 i = i + 1 return res # Driver code print("Integer form of Roman Numeral is"), print(romanToDecimal("MCMIV"))
constant
linear
# Program to convert Roman # Numerals to Numbers roman = {} roman['I'] = 1 roman['V'] = 5 roman['X'] = 10 roman['L'] = 50 roman['C'] = 100 roman['D'] = 500 roman['M'] = 1000 # This function returns value # of a Roman symbol def romanToInt(s): sum = 0 n = len(s) i = 0 while i < n : # If present value is less than next value, # subtract present from next value and add the # resultant to the sum variable. # print(roman[s[i]],roman[s[i+1]]) if (i != n - 1 and roman[s[i]] < roman[s[i + 1]]): sum += roman[s[i + 1]] - roman[s[i]] i += 2 continue else: sum += roman[s[i]] i += 1 return sum # Driver Code # Considering inputs given are valid input = "MCMIV" print(f"Integer form of Roman Numeral is {romanToInt(input)}") # This code is contributed by shinjanpatra
constant
constant
def romanToInt(s): translations = { "I": 1, "V": 5, "X": 10, "L": 50, "C": 100, "D": 500, "M": 1000 } number = 0 s = s.replace("IV", "IIII").replace("IX", "VIIII") s = s.replace("XL", "XXXX").replace("XC", "LXXXX") s = s.replace("CD", "CCCC").replace("CM", "DCCCC") for char in s: number += translations[char] print(number) romanToInt('MCMIV')
constant
constant
# Python3 program to check if a string can # be converted to another string by # performing operations # function to check if a string can be # converted to another string by # performing following operations def check(s1,s2): # calculates length n = len(s1) m = len(s2) dp=([[False for i in range(m+1)] for i in range(n+1)]) # mark 1st position as true dp[0][0] = True # traverse for all DPi, j for i in range(len(s1)): for j in range(len(s2)+1): # if possible for to convert i # characters of s1 to j characters # of s2 if (dp[i][j]): # if upper_case(s1[i])==s2[j] # is same if ((j < len(s2) and (s1[i].upper()== s2[j]))): dp[i + 1][j + 1] = True # if not upper then deletion is # possible if (s1[i].isupper()==False): dp[i + 1][j] = True return (dp[n][m]) # driver code if __name__=='__main__': s1 = "daBcd" s2 = "ABC" if (check(s1, s2)): print("YES") else: print("NO") # this code is contributed by # sahilshelangia
quadratic
quadratic
# Python code to # transform string # def to change # character's case def change_case(s) : a = list(s) l = len(s) for i in range(0, l) : # If character is # lowercase change # to uppercase if(a[i] >= 'a' and a[i] <= 'z') : a[i] = s[i].upper() # If character is uppercase # change to lowercase elif(a[i] >= 'A' and a[i] <= 'Z') : a[i] = s[i].lower() return a # def to delete vowels def delete_vowels(s) : temp = "" a = list(s) l = len(s) for i in range(0, l) : # If character # is consonant if(a[i] != 'a' and a[i] != 'e' and a[i] != 'i' and a[i] != 'o' and a[i] != 'u' and a[i] != 'A' and a[i] != 'E' and a[i] != 'O' and a[i] != 'U' and a[i] != 'I') : temp = temp + a[i] return temp # def to insert "#" def insert_hash(s) : temp = "" a = list(s) l = len(s) for i in range(0, l) : # If character is # not special if((a[i] >= 'a' and a[i] <= 'z') or (a[i] >= 'A' and a[i] <= 'Z')) : temp = temp + '#' + a[i] else : temp = temp + a[i] return temp # def to # transform string def transformSting(a) : b = delete_vowels(a) c = change_case(b) d = insert_hash(c) print (d) # Driver Code a = "SunshinE!!" # Calling def transformSting(a) # This code is contributed by # Manish Shaw(manishshaw1)
linear
linear
# Python implementation of above approach # A utility function to reverse string str[low..high] def Reverse(string: list, low: int, high: int): while low < high: string[low], string[high] = string[high], string[low] low += 1 high -= 1 # Cycle leader algorithm to move all even # positioned elements at the end. def cycleLeader(string: list, shift: int, len: int): i = 1 while i < len: j = i item = string[j + shift] while True: # odd index if j & 1: j = len // 2 + j // 2 # even index else: j //= 2 # keep the back-up of element at new position string[j + shift], item = item, string[j + shift] if j == i: break i *= 3 # The main function to transform a string. This function # mainly uses cycleLeader() to transform def moveNumberToSecondHalf(string: list): k, lenFirst = 0, 0 lenRemaining = len(string) shift = 0 while lenRemaining: k = 0 # Step 1: Find the largest prefix # subarray of the form 3^k + 1 while pow(3, k) + 1 <= lenRemaining: k += 1 lenFirst = pow(3, k - 1) + 1 lenRemaining -= lenFirst # Step 2: Apply cycle leader algorithm # for the largest subarrau cycleLeader(string, shift, lenFirst) # Step 4.1: Reverse the second half of first subarray Reverse(string, shift // 2, shift - 1) # Step 4.2: Reverse the first half of second sub-string Reverse(string, shift, shift + lenFirst // 2 - 1) # Step 4.3 Reverse the second half of first sub-string # and first half of second sub-string together Reverse(string, shift // 2, shift + lenFirst // 2 - 1) # Increase the length of first subarray shift += lenFirst # Driver Code if __name__ == "__main__": string = "a1b2c3d4e5f6g7" string = list(string) moveNumberToSecondHalf(string) print(''.join(string)) # This code is contributed by # sanjeev2552
constant
quadratic
# Python3 program to count the distinct # transformation of one string to other. def countTransformation(a, b): n = len(a) m = len(b) # If b = "" i.e., an empty string. There # is only one way to transform (remove all # characters) if m == 0: return 1 dp = [[0] * (n) for _ in range(m)] # Fill dp[][] in bottom up manner # Traverse all character of b[] for i in range(m): # Traverse all characters of a[] for b[i] for j in range(i, n): # Filling the first row of the dp # matrix. if i == 0: if j == 0: if a[j] == b[i]: dp[i][j] = 1 else: dp[i][j] = 0 else if a[j] == b[i]: dp[i][j] = dp[i][j - 1] + 1 else: dp[i][j] = dp[i][j - 1] # Filling other rows else: if a[j] == b[i]: dp[i][j] = (dp[i][j - 1] + dp[i - 1][j - 1]) else: dp[i][j] = dp[i][j - 1] return dp[m - 1][n - 1] # Driver Code if __name__ == "__main__": a = "abcccdf" b = "abccdf" print(countTransformation(a, b)) # This code is contributed by vibhu4agarwal
quadratic
quadratic
# Class to define a node # structure of the tree class Node: def __init__(self, key): self.data = key self.left = None self.right = None # Function to convert ternary # expression to a Binary tree # It returns the root node # of the tree def convert_expression(expression, i): if i >= len(expression): return None # Create a new node object # for the expression at # ith index root = Node(expression[i]) i += 1 # if current character of # ternary expression is '?' # then we add next character # as a left child of # current node if (i < len(expression) and expression[i] is "?"): root.left = convert_expression(expression, i + 1) # else we have to add it # as a right child of # current node expression[0] == ':' elif i < len(expression): root.right = convert_expression(expression, i + 1) return root # Function to print the tree # in a pre-order traversal pattern def print_tree(root): if not root: return print(root.data, end=' ') print_tree(root.left) print_tree(root.right) # Driver Code if __name__ == "__main__": string_expression = "a?b?c:d:e" root_node = convert_expression(string_expression, 0) print_tree(root_node) # This code is contributed # by Kanav Malhotra
linear
linear
# Python Program to convert prefix to Infix def prefixToInfix(prefix): stack = [] # read prefix in reverse order i = len(prefix) - 1 while i >= 0: if not isOperator(prefix[i]): # symbol is operand stack.append(prefix[i]) i -= 1 else: # symbol is operator str = "(" + stack.pop() + prefix[i] + stack.pop() + ")" stack.append(str) i -= 1 return stack.pop() def isOperator(c): if c == "*" or c == "+" or c == "-" or c == "/" or c == "^" or c == "(" or c == ")": return True else: return False # Driver code if __name__=="__main__": str = "*-A/BC-/AKL" print(prefixToInfix(str)) # This code is contributed by avishekarora
linear
linear
# Write Python3 code here # -*- coding: utf-8 -*- # Example Input s = "*-A/BC-/AKL" # Stack for storing operands stack = [] operators = set(['+', '-', '*', '/', '^']) # Reversing the order s = s[::-1] # iterating through individual tokens for i in s: # if token is operator if i in operators: # pop 2 elements from stack a = stack.pop() b = stack.pop() # concatenate them as operand1 + # operand2 + operator temp = a+b+i stack.append(temp) # else if operand else: stack.append(i) # printing final output print(*stack)
linear
linear
# Python3 Program to convert postfix to prefix # function to check if # character is operator or not def isOperator(x): if x == "+": return True if x == "-": return True if x == "/": return True if x == "*": return True return False # Convert postfix to Prefix expression def postToPre(post_exp): s = [] # length of expression length = len(post_exp) # reading from right to left for i in range(length): # check if symbol is operator if (isOperator(post_exp[i])): # pop two operands from stack op1 = s[-1] s.pop() op2 = s[-1] s.pop() # concat the operands and operator temp = post_exp[i] + op2 + op1 # Push string temp back to stack s.append(temp) # if symbol is an operand else: # push the operand to the stack s.append(post_exp[i]) ans = "" for i in s: ans += i return ans # Driver Code if __name__ == "__main__": post_exp = "AB+CD-" # Function call print("Prefix : ", postToPre(post_exp)) # This code is contributed by AnkitRai01
linear
linear
# Python3 program to find infix for # a given postfix. def isOperand(x): return ((x >= 'a' and x <= 'z') or (x >= 'A' and x <= 'Z')) # Get Infix for a given postfix # expression def getInfix(exp) : s = [] for i in exp: # Push operands if (isOperand(i)) : s.insert(0, i) # We assume that input is a # valid postfix and expect # an operator. else: op1 = s[0] s.pop(0) op2 = s[0] s.pop(0) s.insert(0, "(" + op2 + i + op1 + ")") # There must be a single element in # stack now which is the required # infix. return s[0] # Driver Code if __name__ == '__main__': exp = "ab*c+" print(getInfix(exp.strip())) # This code is contributed by # Shubham Singh(SHUBHAMSINGH10)
linear
linear
# Python 3 program for space optimized # solution of Word Wrap problem. import sys # Function to find space optimized # solution of Word Wrap problem. def solveWordWrap(arr, n, k): dp = [0] * n # Array in which ans[i] store index # of last word in line starting with # word arr[i]. ans = [0] * n # If only one word is present then # only one line is required. Cost # of last line is zero. Hence cost # of this line is zero. Ending point # is also n-1 as single word is # present. dp[n - 1] = 0 ans[n - 1] = n - 1 # Make each word first word of line # by iterating over each index in arr. for i in range(n - 2, -1, -1): currlen = -1 dp[i] = sys.maxsize # Keep on adding words in current # line by iterating from starting # word upto last word in arr. for j in range(i, n): # Update number of characters # in current line. arr[j] is # number of characters in # current word and 1 # represents space character # between two words. currlen += (arr[j] + 1) # If limit of characters # is violated then no more # words can be added to # current line. if (currlen > k): break # If current word that is # added to line is last # word of arr then current # line is last line. Cost of # last line is 0. Else cost # is square of extra spaces # plus cost of putting line # breaks in rest of words # from j+1 to n-1. if (j == n - 1): cost = 0 else: cost = ((k - currlen) * (k - currlen) + dp[j + 1]) # Check if this arrangement gives # minimum cost for line starting # with word arr[i]. if (cost < dp[i]): dp[i] = cost ans[i] = j # Print starting index and ending index # of words present in each line. i = 0 while (i < n): print(i + 1 , ans[i] + 1, end = " ") i = ans[i] + 1 # Driver Code if __name__ == "__main__": arr = [3, 2, 2, 5 ] n = len(arr) M = 6 solveWordWrap(arr, n, M) # This code is contributed by ita_c
linear
quadratic
# Python 3 program to print shortest possible # path to type all characters of given string # using a remote # Function to print shortest possible path # to type all characters of given string # using a remote def printPath(str): i = 0 # start from character 'A' present # at position (0, 0) curX = 0 curY = 0 while (i < len(str)): # find coordinates of next character nextX = int((ord(str[i]) - ord('A')) / 5) nextY = (ord(str[i]) - ord('B') + 1) % 5 # Move Up if destination is above while (curX > nextX): print("Move Up") curX -= 1 # Move Left if destination is to the left while (curY > nextY): print("Move Left") curY -= 1 # Move down if destination is below while (curX < nextX): print("Move Down") curX += 1 # Move Right if destination is to the right while (curY < nextY): print("Move Right") curY += 1 # At this point, destination is reached print("Press OK") i += 1 # Driver code if __name__ == '__main__': str = "COZY" printPath(str) # This code is contributed by # Sanjit_Prasad
constant
quadratic
# Python program to check whether second string # can be formed from first string def canMakeStr2(s1, s2): # Create a count array and count # frequencies characters in s1 count = {s1[i] : 0 for i in range(len(s1))} for i in range(len(s1)): count[s1[i]] += 1 # Now traverse through str2 to check # if every character has enough counts for i in range(len(s2)): if (count.get(s2[i]) == None or count[s2[i]] == 0): return False count[s2[i]] -= 1 return True # Driver Code s1 = "geekforgeeks" s2 = "for" if canMakeStr2(s1, s2): print("Yes") else: print("No")
constant
linear
# python code to find the reverse # alphabetical order from a given # position # Function which take the given string and the # position from which the reversing shall be # done and returns the modified string def compute(st, n): # Creating a string having reversed # alphabetical order reverseAlphabet = "zyxwvutsrqponmlkjihgfedcba" l = len(st) # The string up to the point specified in the # question, the string remains unchanged and # from the point up to the length of the # string, we reverse the alphabetical order answer = "" for i in range(0, n): answer = answer + st[i]; for i in range(n, l): answer = (answer + reverseAlphabet[ord(st[i]) - ord('a')]); return answer; # Driver function st = "pneumonia" n = 4 answer = compute(st, n - 1) print(answer) # This code is contributed by Sam007.
constant
linear
# A Python program to find last # index of character x in given # string. # Returns last index of x if it # is present. Else returns -1. def findLastIndex(str, x): index = -1 for i in range(0, len(str)): if str[i] == x: index = i return index # Driver program # String in which char is to be found str = "geeksforgeeks" # char whose index is to be found x = 'e' index = findLastIndex(str, x) if index == -1: print("Character not found") else: print('Last index is', index) # This code is contributed by shrikant13.
constant
linear
# Simple Python3 program to find last # index of character x in given string. # Returns last index of x if it is # present. Else returns -1. def findLastIndex(str, x): # Traverse from right for i in range(len(str) - 1, -1,-1): if (str[i] == x): return i return -1 # Driver code str = "geeksforgeeks" x = 'e' index = findLastIndex(str, x) if (index == -1): print("Character not found") else: print("Last index is " ,index) # This code is contributed by Smitha
constant
linear
# python program to find position # of a number in a series of # numbers with 4 and 7 as the # only digits. def findpos(n): i = 0 j = len(n) pos = 0 while (i<j): # check all digit position # if number is left then # pos*2+1 if(n[i] == '4'): pos = pos * 2 + 1 # if number is right then # pos*2+2 if(n[i] == '7'): pos = pos * 2 + 2 i= i+1 return pos # Driver code # given a number which is constructed # by 4 and 7 digit only n = "774" print(findpos(n)) # This code is contributed by Sam007
constant
linear
# Python3 program to find winner in an election. from collections import defaultdict ''' We have four Candidates with name as 'John', 'Johnny', 'jamie', 'jackie'. The votes in String array are as per the votes casted. Print the name of candidates received Max vote. ''' def findWinner(votes): # Insert all votes in a hashmap mapObj = defaultdict(int) for st in votes: mapObj[st] += 1 # Traverse through map to find the # candidate with maximum votes. maxValueInMap = 0 winner = "" for entry in mapObj: key = entry val = mapObj[entry] if (val > maxValueInMap): maxValueInMap = val winner = key # If there is a tie, pick lexicographically # smaller. else if (val == maxValueInMap and winner > key): winner = key print(winner) # Driver code if __name__ == "__main__": votes = ["john", "johnny", "jackie", "johnny", "john", "jackie", "jamie", "jamie", "john", "johnny", "jamie", "johnny", "john"] findWinner(votes) # This code is contributed by ukasp
linear
linear
# Python 3 program to check if a query # string is present is given set. MAX_CHAR = 256 def isPresent(s, q): # Count occurrences of all characters # in s. freq = [0] * MAX_CHAR for i in range(0 , len(s)): freq[ord(s[i])] += 1 # Check if number of occurrences of # every character in q is less than # or equal to that in s. for i in range(0, len(q)): freq[ord(q[i])] -= 1 if (freq[ord(q[i])] < 0): return False return True # driver program s = "abctd" q = "cat" if (isPresent(s, q)): print("Yes") else: print("No") # This code is contributed by Smitha
constant
linear
# Python program to find # the arrangement of # queue at time = t # prints the arrangement # at time = t def solve(n, t, p) : s = list(p) # Checking the entire # queue for every # moment from time = 1 # to time = t. for i in range(0, t) : for j in range(0, n - 1) : # If current index # contains 'B' and # next index contains # 'G' then swap if (s[j] == 'B' and s[j + 1] == 'G') : temp = s[j]; s[j] = s[j + 1]; s[j + 1] = temp; j = j + 1 print (''.join(s)) # Driver code n = 6 t = 2 p = "BBGBBG" solve(n, t, p) # This code is contributed by # Manish Shaw(manishshaw1)
constant
quadratic
# Python3 code to check whether the # given EMEI number is valid or not # Function for finding and returning # sum of digits of a number def sumDig( n ): a = 0 while n > 0: a = a + n % 10 n = int(n / 10) return a # Returns True if n is valid EMEI def isValidEMEI(n): # Converting the number into # String for finding length s = str(n) l = len(s) # If length is not 15 then IMEI is Invalid if l != 15: return False d = 0 sum = 0 for i in range(15, 0, -1): d = (int)(n % 10) if i % 2 == 0: # Doubling every alternate digit d = 2 * d # Finding sum of the digits sum = sum + sumDig(d) n = n / 10 return (sum % 10 == 0) # Driver code n = 490154203237518 if isValidEMEI(n): print("Valid IMEI Code") else: print("Invalid IMEI Code") # This code is contributed by "Sharad_Bhardwaj".
linear
nlogn
# Python3 program to decode a median # string to the original string # function to calculate the median # back string def decodeMedianString(s): # length of string l = len(s) # initialize a blank string s1 = "" # Flag to check if length is # even or odd if(l % 2 == 0): isEven = True else: isEven = False # traverse from first to last for i in range(0, l, 2): # if len is even then add first # character to beginning of new # string and second character to end if (isEven): s1 = s[i] + s1 s1 += s[i + 1] else : # if current length is odd and # is greater than 1 if (l - i > 1): # add first character to end and # second character to beginning s1 += s[i] s1 = s[i + 1] + s1 else: # if length is 1, add character # to end s1 += s[i] return s1 # Driver Code if __name__ == '__main__': s = "eekgs" print(decodeMedianString(s)) # This code is contributed by # Sanjit_Prasad
constant
linear
# Python program to decode a string recursively # encoded as count followed substring # Returns decoded string for 'str' def decode(Str): integerstack = [] stringstack = [] temp = "" result = "" i = 0 # Traversing the string while i < len(Str): count = 0 # If number, convert it into number # and push it into integerstack. if (Str[i] >= '0' and Str[i] <='9'): while (Str[i] >= '0' and Str[i] <= '9'): count = count * 10 + ord(Str[i]) - ord('0') i += 1 i -= 1 integerstack.append(count) # If closing bracket ']', pop element until # '[' opening bracket is not found in the # character stack. elif (Str[i] == ']'): temp = "" count = 0 if (len(integerstack) != 0): count = integerstack[-1] integerstack.pop() while (len(stringstack) != 0 and stringstack[-1] !='[' ): temp = stringstack[-1] + temp stringstack.pop() if (len(stringstack) != 0 and stringstack[-1] == '['): stringstack.pop() # Repeating the popped string 'temo' count # number of times. for j in range(count): result = result + temp # Push it in the character stack. for j in range(len(result)): stringstack.append(result[j]) result = "" # If '[' opening bracket, push it into character stack. elif (Str[i] == '['): if (Str[i-1] >= '0' and Str[i-1] <= '9'): stringstack.append(Str[i]) else: stringstack.append(Str[i]) integerstack.append(1) else: stringstack.append(Str[i]) i += 1 # Pop all the element, make a string and return. while len(stringstack) != 0: result = stringstack[-1] + result stringstack.pop() return result # Driven code if __name__ == '__main__': Str = "3[b2[ca]]" print(decode(Str)) # This code is contributed by PranchalK.
linear
linear
def decodeString(s): st = [] for i in range(len(s)): # When ']' is encountered, we need to start decoding if s[i] == ']': temp = "" while len(st) > 0 and st[-1] != '[': # st.top() + temp makes sure that the # string won't be in reverse order eg, if # the stack contains 12[abc temp = c + "" => # temp = b + "c" => temp = a + "bc" temp = st[-1] + temp st.pop() # remove the '[' from the stack st.pop() num = "" # remove the digits from the stack while len(st) > 0 and ord(st[-1]) >= 48 and ord(st[-1]) <= 57: num = st[-1] + num st.pop() number = int(num) repeat = "" for j in range(number): repeat += temp for c in range(len(repeat)): if len(st) > 0: if repeat == st[-1]: break #otherwise this thingy starts appending the same decoded words st.append(repeat) else: st.append(s[i]) return st[0] Str = "3[b2[ca]]" print(decodeString(Str)) # This code is contributed by mukesh07. # And debugged by ivannakreshchenetska
linear
linear
# Python 3 program to make a number magical # function to calculate the minimal changes def calculate( s): # maximum digits that can be changed ans = 6 # nested loops to generate all 6 # digit numbers for i in range(10): for j in range(10): for k in range(10): for l in range(10): for m in range(10): for n in range(10): if (i + j + k == l + m + n): # counter to count the number # of change required c = 0 # if first digit is equal if (i != ord(s[0]) - ord('0')): c+=1 # if 2nd digit is equal if (j != ord(s[1]) - ord('0')): c+=1 # if 3rd digit is equal if (k != ord(s[2]) - ord('0')): c+=1 # if 4th digit is equal if (l != ord(s[3]) - ord('0')): c+=1 # if 5th digit is equal if (m != ord(s[4]) - ord('0')): c+=1 # if 6th digit is equal if (n != ord(s[5]) - ord('0')): c+=1 # checks if less than the # previous calculate changes if (c < ans): ans = c # returns the answer return ans # driver program to test the above function if __name__ == "__main__": # number stored in string s = "123456" # prints the minimum operations print(calculate(s))
constant
np
# Python code to check if a # given ISBN is valid or not. def isValidISBN(isbn): # check for length if len(isbn) != 10: return False # Computing weighted sum # of first 9 digits _sum = 0 for i in range(9): if 0 <= int(isbn[i]) <= 9: _sum += int(isbn[i]) * (10 - i) else: return False # Checking last digit if(isbn[9] != 'X' and 0 <= int(isbn[9]) <= 9): return False # If last digit is 'X', add # 10 to sum, else add its value. _sum += 10 if isbn[9] == 'X' else int(isbn[9]) # Return true if weighted sum of # digits is divisible by 11 return (_sum % 11 == 0) # Driver Code isbn = "007462542X" if isValidISBN(isbn): print('Valid') else: print("Invalid") # This code is contributed # by "Abhishek Sharma 44"
constant
constant
class CreditCard: # Main Method @staticmethod def main(args): number = 5196081888500645 print(str(number) + " is " + ("valid" if CreditCard.isValid(number) else "invalid")) # Return true if the card number is valid @staticmethod def isValid(number): return (CreditCard.getSize(number) >= 13 and CreditCard.getSize(number) <= 16) and (CreditCard.prefixMatched(number, 4) or CreditCard.prefixMatched(number, 5) or CreditCard.prefixMatched(number, 37) or CreditCard.prefixMatched(number, 6)) and ((CreditCard.sumOfDoubleEvenPlace(number) + CreditCard.sumOfOddPlace(number)) % 10 == 0) # Get the result from Step 2 @staticmethod def sumOfDoubleEvenPlace(number): sum = 0 num = str(number) + "" i = CreditCard.getSize(number) - 2 while (i >= 0): sum += CreditCard.getDigit(int(str(num[i]) + "") * 2) i -= 2 return sum # Return this number if it is a single digit, otherwise, # return the sum of the two digits @staticmethod def getDigit(number): if (number < 9): return number return int(number / 10) + number % 10 # Return sum of odd-place digits in number @staticmethod def sumOfOddPlace(number): sum = 0 num = str(number) + "" i = CreditCard.getSize(number) - 1 while (i >= 0): sum += int(str(num[i]) + "") i -= 2 return sum # Return true if the digit d is a prefix for number @staticmethod def prefixMatched(number, d): return CreditCard.getPrefix(number, CreditCard.getSize(d)) == d # Return the number of digits in d @staticmethod def getSize(d): num = str(d) + "" return len(num) # Return the first k number of digits from # number. If the number of digits in number # is less than k, return number. @staticmethod def getPrefix(number, k): if (CreditCard.getSize(number) > k): num = str(number) + "" return int(num[0:k]) return number if __name__ == "__main__": CreditCard.main([]) # This code is contributed by Aarti_Rathi
constant
linear
# Python3 program to implement the approach # Python3 has no built-in swap function. def swap(str, i, j): ch = list(str) temp = ch[i] ch[i] = ch[j] ch[j] = temp return "".join(ch) # Since STRINGS are immutable in JavaScript, first we have # to convert it to a character array in order to sort. def sortString(str, s_index, e_index): tempArray = list(str) # Sorting temp array using tempArray = tempArray[:s_index] + sorted(tempArray[s_index: e_index]) # returning the new sorted string return "".join(tempArray) def maximizeNumber(N, M): # Sorting the digits of the # number in increasing order. N = sortString(N, 0, len(N)) for i in range(len(N)): for j in range(i + 1, len(N)): # Copying the string into another # temp string. t = N # Swapping the j-th char(digit) # with i-th char(digit) t = swap(t, j, i) # Sorting the temp string # from i-th pos to end. t = sortString(t, i + 1, len(t)) # Checking if the string t is # greater than string N and less # than or equal to the number M. if (int(t) > int(N) and int(t) <= M): # If yes then, we will permanently # swap the i-th char(or digit) # with j-th char(digit). N = swap(N, i, j) # Returns the maximized number. return N # Driver Code N = "123" M = 222 print(maximizeNumber(N, M)) # This code is contributed by phasing17
linear
cubic
# Python program to find # if a given corner string # is present at corners. def isCornerPresent(str, corner) : n = len(str) cl = len(corner) # If length of corner # string is more, it # cannot be present # at corners. if (n < cl) : return False # Return true if corner # string is present at # both corners of given # string. return ((str[: cl] == corner) and (str[n - cl :] == corner)) # Driver Code str = "geeksforgeeks" corner = "geeks" if (isCornerPresent(str, corner)) : print ("Yes") else : print ("No") # This code is contributed by # Manish Shaw(manishshaw1)
constant
linear