Dataset Viewer
Auto-converted to Parquet
code
stringlengths
195
7.9k
space_complexity
stringclasses
6 values
time_complexity
stringclasses
7 values
// LCM of given range queries using Segment Tree #include <bits/stdc++.h> using namespace std; #define MAX 1000 // allocate space for tree int tree[4 * MAX]; // declaring the array globally int arr[MAX]; // Function to return gcd of a and b int gcd(int a, int b) { if (a == 0) return b; return gcd(b % a, a); } // utility function to find lcm int lcm(int a, int b) { return a * b / gcd(a, b); } // Function to build the segment tree // Node starts beginning index of current subtree. // start and end are indexes in arr[] which is global void build(int node, int start, int end) { // If there is only one element in current subarray if (start == end) { tree[node] = arr[start]; return; } int mid = (start + end) / 2; // build left and right segments build(2 * node, start, mid); build(2 * node + 1, mid + 1, end); // build the parent int left_lcm = tree[2 * node]; int right_lcm = tree[2 * node + 1]; tree[node] = lcm(left_lcm, right_lcm); } // Function to make queries for array range )l, r). // Node is index of root of current segment in segment // tree (Note that indexes in segment tree begin with 1 // for simplicity). // start and end are indexes of subarray covered by root // of current segment. int query(int node, int start, int end, int l, int r) { // Completely outside the segment, returning // 1 will not affect the lcm; if (end < l || start > r) return 1; // completely inside the segment if (l <= start && r >= end) return tree[node]; // partially inside int mid = (start + end) / 2; int left_lcm = query(2 * node, start, mid, l, r); int right_lcm = query(2 * node + 1, mid + 1, end, l, r); return lcm(left_lcm, right_lcm); } // driver function to check the above program int main() { // initialize the array arr[0] = 5; arr[1] = 7; arr[2] = 5; arr[3] = 2; arr[4] = 10; arr[5] = 12; arr[6] = 11; arr[7] = 17; arr[8] = 14; arr[9] = 1; arr[10] = 44; // build the segment tree build(1, 0, 10); // Now we can answer each query efficiently // Print LCM of (2, 5) cout << query(1, 0, 10, 2, 5) << endl; // Print LCM of (5, 10) cout << query(1, 0, 10, 5, 10) << endl; // Print LCM of (0, 10) cout << query(1, 0, 10, 0, 10) << endl; return 0; }
constant
linear
// C++ program to find minimum and maximum using segment // tree #include <bits/stdc++.h> using namespace std; // Node for storing minimum and maximum value of given range struct node { int minimum; int maximum; }; // A utility function to get the middle index from corner // indexes. int getMid(int s, int e) { return s + (e - s) / 2; } /* A recursive function to get the minimum and maximum value in a given range of array indexes. The following are parameters for this function. st --> Pointer to segment tree index --> Index of current node in the segment tree. Initially 0 is passed as root is always at index 0 ss & se --> Starting and ending indexes of the segment represented by current node, i.e., st[index] qs & qe --> Starting and ending indexes of query range */ struct node MaxMinUntill(struct node* st, int ss, int se, int qs, int qe, int index) { // If segment of this node is a part of given range, // then return // the minimum and maximum node of the segment struct node tmp, left, right; if (qs <= ss && qe >= se) return st[index]; // If segment of this node is outside the given range if (se < qs || ss > qe) { tmp.minimum = INT_MAX; tmp.maximum = INT_MIN; return tmp; } // If a part of this segment overlaps with the given // range int mid = getMid(ss, se); left = MaxMinUntill(st, ss, mid, qs, qe, 2 * index + 1); right = MaxMinUntill(st, mid + 1, se, qs, qe, 2 * index + 2); tmp.minimum = min(left.minimum, right.minimum); tmp.maximum = max(left.maximum, right.maximum); return tmp; } // Return minimum and maximum of elements in range from // index qs (query start) to qe (query end). It mainly uses // MaxMinUtill() struct node MaxMin(struct node* st, int n, int qs, int qe) { struct node tmp; // Check for erroneous input values if (qs < 0 || qe > n - 1 || qs > qe) { printf("Invalid Input"); tmp.minimum = INT_MIN; tmp.minimum = INT_MAX; return tmp; } return MaxMinUntill(st, 0, n - 1, qs, qe, 0); } // A recursive function that constructs Segment Tree for // array[ss..se]. si is index of current node in segment // tree st void constructSTUtil(int arr[], int ss, int se, struct node* st, int si) { // If there is one element in array, store it in current // node of segment tree and return if (ss == se) { st[si].minimum = arr[ss]; st[si].maximum = arr[ss]; return; } // If there are more than one elements, then recur for // left and right subtrees and store the minimum and // maximum of two values in this node int mid = getMid(ss, se); constructSTUtil(arr, ss, mid, st, si * 2 + 1); constructSTUtil(arr, mid + 1, se, st, si * 2 + 2); st[si].minimum = min(st[si * 2 + 1].minimum, st[si * 2 + 2].minimum); st[si].maximum = max(st[si * 2 + 1].maximum, st[si * 2 + 2].maximum); } /* Function to construct segment tree from given array. This function allocates memory for segment tree and calls constructSTUtil() to fill the allocated memory */ struct node* constructST(int arr[], int n) { // Allocate memory for segment tree // Height of segment tree int x = (int)(ceil(log2(n))); // Maximum size of segment tree int max_size = 2 * (int)pow(2, x) - 1; struct node* st = new struct node[max_size]; // Fill the allocated memory st constructSTUtil(arr, 0, n - 1, st, 0); // Return the constructed segment tree return st; } // Driver code int main() { int arr[] = { 1, 8, 5, 9, 6, 14, 2, 4, 3, 7 }; int n = sizeof(arr) / sizeof(arr[0]); // Build segment tree from given array struct node* st = constructST(arr, n); int qs = 0; // Starting index of query range int qe = 8; // Ending index of query range struct node result = MaxMin(st, n, qs, qe); // Function call printf("Minimum = %d and Maximum = %d ", result.minimum, result.maximum); return 0; }
linear
logn
/* C++ Program to find LCA of u and v by reducing the problem to RMQ */ #include<bits/stdc++.h> #define V 9 // number of nodes in input tree int euler[2*V - 1]; // For Euler tour sequence int level[2*V - 1]; // Level of nodes in tour sequence int firstOccurrence[V+1]; // First occurrences of nodes in tour int ind; // Variable to fill-in euler and level arrays // A Binary Tree node struct Node { int key; struct Node *left, *right; }; // Utility function creates a new binary tree node with given key Node * newNode(int k) { Node *temp = new Node; temp->key = k; temp->left = temp->right = NULL; return temp; } // log base 2 of x int Log2(int x) { int ans = 0 ; while (x>>=1) ans++; return ans ; } /* A recursive function to get the minimum value in a given range of array indexes. The following are parameters for this function. st --> Pointer to segment tree index --> Index of current node in the segment tree. Initially 0 is passed as root is always at index 0 ss & se --> Starting and ending indexes of the segment represented by current node, i.e., st[index] qs & qe --> Starting and ending indexes of query range */ int RMQUtil(int index, int ss, int se, int qs, int qe, int *st) { // If segment of this node is a part of given range, then return // the min of the segment if (qs <= ss && qe >= se) return st[index]; // If segment of this node is outside the given range else if (se < qs || ss > qe) return -1; // If a part of this segment overlaps with the given range int mid = (ss + se)/2; int q1 = RMQUtil(2*index+1, ss, mid, qs, qe, st); int q2 = RMQUtil(2*index+2, mid+1, se, qs, qe, st); if (q1==-1) return q2; else if (q2==-1) return q1; return (level[q1] < level[q2]) ? q1 : q2; } // Return minimum of elements in range from index qs (query start) to // qe (query end). It mainly uses RMQUtil() int RMQ(int *st, int n, int qs, int qe) { // Check for erroneous input values if (qs < 0 || qe > n-1 || qs > qe) { printf("Invalid Input"); return -1; } return RMQUtil(0, 0, n-1, qs, qe, st); } // A recursive function that constructs Segment Tree for array[ss..se]. // si is index of current node in segment tree st void constructSTUtil(int si, int ss, int se, int arr[], int *st) { // If there is one element in array, store it in current node of // segment tree and return if (ss == se)st[si] = ss; else { // If there are more than one elements, then recur for left and // right subtrees and store the minimum of two values in this node int mid = (ss + se)/2; constructSTUtil(si*2+1, ss, mid, arr, st); constructSTUtil(si*2+2, mid+1, se, arr, st); if (arr[st[2*si+1]] < arr[st[2*si+2]]) st[si] = st[2*si+1]; else st[si] = st[2*si+2]; } } /* Function to construct segment tree from given array. This function allocates memory for segment tree and calls constructSTUtil() to fill the allocated memory */ int *constructST(int arr[], int n) { // Allocate memory for segment tree // Height of segment tree int x = Log2(n)+1; // Maximum size of segment tree int max_size = 2*(1<<x) - 1; // 2*pow(2,x) -1 int *st = new int[max_size]; // Fill the allocated memory st constructSTUtil(0, 0, n-1, arr, st); // Return the constructed segment tree return st; } // Recursive version of the Euler tour of T void eulerTour(Node *root, int l) { /* if the passed node exists */ if (root) { euler[ind] = root->key; // insert in euler array level[ind] = l; // insert l in level array ind++; // increment index /* if unvisited, mark first occurrence */ if (firstOccurrence[root->key] == -1) firstOccurrence[root->key] = ind-1; /* tour left subtree if exists, and remark euler and level arrays for parent on return */ if (root->left) { eulerTour(root->left, l+1); euler[ind]=root->key; level[ind] = l; ind++; } /* tour right subtree if exists, and remark euler and level arrays for parent on return */ if (root->right) { eulerTour(root->right, l+1); euler[ind]=root->key; level[ind] = l; ind++; } } } // Returns LCA of nodes n1, n2 (assuming they are // present in the tree) int findLCA(Node *root, int u, int v) { /* Mark all nodes unvisited. Note that the size of firstOccurrence is 1 as node values which vary from 1 to 9 are used as indexes */ memset(firstOccurrence, -1, sizeof(int)*(V+1)); /* To start filling euler and level arrays from index 0 */ ind = 0; /* Start Euler tour with root node on level 0 */ eulerTour(root, 0); /* construct segment tree on level array */ int *st = constructST(level, 2*V-1); /* If v before u in Euler tour. For RMQ to work, first parameter 'u' must be smaller than second 'v' */ if (firstOccurrence[u]>firstOccurrence[v]) std::swap(u, v); // Starting and ending indexes of query range int qs = firstOccurrence[u]; int qe = firstOccurrence[v]; // query for index of LCA in tour int index = RMQ(st, 2*V-1, qs, qe); /* return LCA node */ return euler[index]; } // Driver program to test above functions int main() { // Let us create the Binary Tree as shown in the diagram. Node * root = newNode(1); root->left = newNode(2); root->right = newNode(3); root->left->left = newNode(4); root->left->right = newNode(5); root->right->left = newNode(6); root->right->right = newNode(7); root->left->right->left = newNode(8); root->left->right->right = newNode(9); int u = 4, v = 9; printf("The LCA of node %d and node %d is node %d.\n", u, v, findLCA(root, u, v)); return 0; }
linear
linear
// A Divide and Conquer Program to find maximum rectangular area in a histogram #include <bits/stdc++.h> using namespace std; // A utility function to find minimum of three integers int max(int x, int y, int z) { return max(max(x, y), z); } // A utility function to get minimum of two numbers in hist[] int minVal(int *hist, int i, int j) { if (i == -1) return j; if (j == -1) return i; return (hist[i] < hist[j])? i : j; } // A utility function to get the middle index from corner indexes. int getMid(int s, int e) { return s + (e -s)/2; } /* A recursive function to get the index of minimum value in a given range of indexes. The following are parameters for this function. hist --> Input array for which segment tree is built st --> Pointer to segment tree index --> Index of current node in the segment tree. Initially 0 is passed as root is always at index 0 ss & se --> Starting and ending indexes of the segment represented by current node, i.e., st[index] qs & qe --> Starting and ending indexes of query range */ int RMQUtil(int *hist, int *st, int ss, int se, int qs, int qe, int index) { // If segment of this node is a part of given range, then return the // min of the segment if (qs <= ss && qe >= se) return st[index]; // If segment of this node is outside the given range if (se < qs || ss > qe) return -1; // If a part of this segment overlaps with the given range int mid = getMid(ss, se); return minVal(hist, RMQUtil(hist, st, ss, mid, qs, qe, 2*index+1), RMQUtil(hist, st, mid+1, se, qs, qe, 2*index+2)); } // Return index of minimum element in range from index qs (query start) to // qe (query end). It mainly uses RMQUtil() int RMQ(int *hist, int *st, int n, int qs, int qe) { // Check for erroneous input values if (qs < 0 || qe > n-1 || qs > qe) { cout << "Invalid Input"; return -1; } return RMQUtil(hist, st, 0, n-1, qs, qe, 0); } // A recursive function that constructs Segment Tree for hist[ss..se]. // si is index of current node in segment tree st int constructSTUtil(int hist[], int ss, int se, int *st, int si) { // If there is one element in array, store it in current node of // segment tree and return if (ss == se) return (st[si] = ss); // If there are more than one elements, then recur for left and // right subtrees and store the minimum of two values in this node int mid = getMid(ss, se); st[si] = minVal(hist, constructSTUtil(hist, ss, mid, st, si*2+1), constructSTUtil(hist, mid+1, se, st, si*2+2)); return st[si]; } /* Function to construct segment tree from given array. This function allocates memory for segment tree and calls constructSTUtil() to fill the allocated memory */ int *constructST(int hist[], int n) { // Allocate memory for segment tree int x = (int)(ceil(log2(n))); //Height of segment tree int max_size = 2*(int)pow(2, x) - 1; //Maximum size of segment tree int *st = new int[max_size]; // Fill the allocated memory st constructSTUtil(hist, 0, n-1, st, 0); // Return the constructed segment tree return st; } // A recursive function to find the maximum rectangular area. // It uses segment tree 'st' to find the minimum value in hist[l..r] int getMaxAreaRec(int *hist, int *st, int n, int l, int r) { // Base cases if (l > r) return INT_MIN; if (l == r) return hist[l]; // Find index of the minimum value in given range // This takes O(Logn)time int m = RMQ(hist, st, n, l, r); /* Return maximum of following three possible cases a) Maximum area in Left of min value (not including the min) a) Maximum area in right of min value (not including the min) c) Maximum area including min */ return max(getMaxAreaRec(hist, st, n, l, m-1), getMaxAreaRec(hist, st, n, m+1, r), (r-l+1)*(hist[m]) ); } // The main function to find max area int getMaxArea(int hist[], int n) { // Build segment tree from given array. This takes // O(n) time int *st = constructST(hist, n); // Use recursive utility function to find the // maximum area return getMaxAreaRec(hist, st, n, 0, n-1); } // Driver program to test above functions int main() { int hist[] = {6, 1, 5, 4, 5, 2, 6}; int n = sizeof(hist)/sizeof(hist[0]); cout << "Maximum area is " << getMaxArea(hist, n); return 0; }
linear
nlogn
// C++ program to print all words in the CamelCase // dictionary that matches with a given pattern #include <bits/stdc++.h> using namespace std; // Alphabet size (# of upper-Case characters) #define ALPHABET_SIZE 26 // A Trie node struct TrieNode { TrieNode* children[ALPHABET_SIZE]; // isLeaf is true if the node represents // end of a word bool isLeaf; // vector to store list of complete words // in leaf node list<string> word; }; // Returns new Trie node (initialized to NULLs) TrieNode* getNewTrieNode(void) { TrieNode* pNode = new TrieNode; if (pNode) { pNode->isLeaf = false; for (int i = 0; i < ALPHABET_SIZE; i++) pNode->children[i] = NULL; } return pNode; } // Function to insert word into the Trie void insert(TrieNode* root, string word) { int index; TrieNode* pCrawl = root; for (int level = 0; level < word.length(); level++) { // consider only uppercase characters if (islower(word[level])) continue; // get current character position index = int(word[level]) - 'A'; if (!pCrawl->children[index]) pCrawl->children[index] = getNewTrieNode(); pCrawl = pCrawl->children[index]; } // mark last node as leaf pCrawl->isLeaf = true; // push word into vector associated with leaf node (pCrawl->word).push_back(word); } // Function to print all children of Trie node root void printAllWords(TrieNode* root) { // if current node is leaf if (root->isLeaf) { for(string str : root->word) cout << str << endl; } // recurse for all children of root node for (int i = 0; i < ALPHABET_SIZE; i++) { TrieNode* child = root->children[i]; if (child) printAllWords(child); } } // search for pattern in Trie and print all words // matching that pattern bool search(TrieNode* root, string pattern) { int index; TrieNode* pCrawl = root; for (int level = 0; level < pattern.length(); level++) { index = int(pattern[level]) - 'A'; // Invalid pattern if (!pCrawl->children[index]) return false; pCrawl = pCrawl->children[index]; } // print all words matching that pattern printAllWords(pCrawl); return true; } // Main function to print all words in the CamelCase // dictionary that matches with a given pattern void findAllWords(vector<string> dict, string pattern) { // construct Trie root node TrieNode* root = getNewTrieNode(); // Construct Trie from given dict for (string word : dict) insert(root, word); // search for pattern in Trie if (!search(root, pattern)) cout << "No match found"; } // Driver function int main() { // dictionary of words where each word follows // CamelCase notation vector<string> dict = { "Hi", "Hello", "HelloWorld", "HiTech", "HiGeek", "HiTechWorld", "HiTechCity", "HiTechLab" }; // pattern consisting of uppercase characters only string pattern = "HT"; findAllWords(dict, pattern); return 0; }
linear
quadratic
// C++ program to construct an n x n // matrix such that every row and every // column has distinct values. #include <iostream> #include <bits/stdc++.h> using namespace std; const int MAX = 100; int mat[MAX][MAX]; // Fills non-one entries in column j // Given that there is a "1" at // position mat[i][j], this function // fills other entries of column j. void fillRemaining(int i, int j, int n) { // Initialize value to be filled int x = 2; // Fill all values below i as 2, 3, ...p for (int k = i + 1; k < n; k++) mat[k][j] = x++; // Fill all values above i // as p + 1, p + 2, .. n for (int k = 0; k < i; k++) mat[k][j] = x++; } // Fills entries in mat[][] // with the given set of rules void constructMatrix(int n) { // Alternatively fill 1s starting from // rightmost and leftmost columns. For // example for n = 3, we get { {_ _ 1}, // {1 _ _} {_ 1 _}} int right = n - 1, left = 0; for (int i = 0; i < n; i++) { // If i is even, then fill // next column from right if (i % 2 == 0) { mat[i][right] = 1; // After filling 1, fill remaining // entries of column "right" fillRemaining(i, right, n); // Move right one column back right--; } // Fill next column from left else { mat[i][left] = 1; // After filling 1, fill remaining // entries of column "left" fillRemaining(i, left, n); // Move left one column forward left++; } } } // Driver code int main() { int n = 5; // Passing n to constructMatrix function constructMatrix(n); // Printing the desired unique matrix for (int i = 0; i < n; i++) { for (int j = 0; j < n; j++) printf("%d ",mat[i][j]); printf ("\n"); } return 0; }
constant
quadratic
// Given a binary matrix of M X N of integers, // you need to return only unique rows of binary array #include <bits/stdc++.h> using namespace std; #define ROW 4 #define COL 5 // The main function that prints // all unique rows in a given matrix. void findUniqueRows(int M[ROW][COL]) { //Traverse through the matrix for(int i=0; i<ROW; i++) { int flag=0; //check if there is similar column //is already printed, i.e if i and //jth column match. for(int j=0; j<i; j++) { flag=1; for(int k=0; k<=COL; k++) if(M[i][k]!=M[j][k]) flag=0; if(flag==1) break; } //if no row is similar if(flag==0) { //print the row for(int j=0; j<COL; j++) cout<<M[i][j]<<" "; cout<<endl; } } } // Driver Code int main() { int M[ROW][COL] = {{0, 1, 0, 0, 1}, {1, 0, 1, 1, 0}, {0, 1, 0, 0, 1}, {1, 0, 1, 0, 0}}; findUniqueRows(M); return 0; }
constant
cubic
// Given a binary matrix of M X N of integers, // you need to return only unique rows of binary array #include <bits/stdc++.h> using namespace std; #define ROW 4 #define COL 5 class BST { int data; BST *left, *right; public: // Default constructor. BST(); // Parameterized constructor. BST(int); // Insert function. BST* Insert(BST *, int); // Inorder traversal. void Inorder(BST *); }; //convert array to decimal int convert(int arr[]) { int sum=0; for(int i=0; i<COL; i++) { sum+=pow(2,i)*arr[i]; } return sum; } //print the column represented as integers void print(int p) { for(int i=0; i<COL; i++) { cout<<p%2<<" "; p/=2; } cout<<endl; } // Default Constructor definition. BST :: BST() : data(0), left(NULL), right(NULL){} // Parameterized Constructor definition. BST :: BST(int value) { data = value; left = right = NULL; } // Insert function definition. BST* BST :: Insert(BST *root, int value) { if(!root) { // Insert the first node, if root is NULL. return new BST(value); } //if the value is present if(value == root->data) return root; // Insert data. if(value > root->data) { // Insert right node data, if the 'value' // to be inserted is greater than 'root' node data. // Process right nodes. root->right = Insert(root->right, value); } else { // Insert left node data, if the 'value' // to be inserted is greater than 'root' node data. // Process left nodes. root->left = Insert(root->left, value); } // Return 'root' node, after insertion. return root; } // Inorder traversal function. // This gives data in sorted order. void BST :: Inorder(BST *root) { if(!root) { return; } Inorder(root->left); print( root->data ); Inorder(root->right); } // The main function that prints // all unique rows in a given matrix. void findUniqueRows(int M[ROW][COL]) { BST b, *root = NULL; //Traverse through the matrix for(int i=0; i<ROW; i++) { //insert the row into BST root=b.Insert(root,convert(M[i])); } //print b.Inorder(root); } // Driver Code int main() { int M[ROW][COL] = {{0, 1, 0, 0, 1}, {1, 0, 1, 1, 0}, {0, 1, 0, 0, 1}, {1, 0, 1, 0, 0}}; findUniqueRows(M); return 0; }
linear
quadratic
// Given a binary matrix of M X N of integers, // you need to return only unique rows of binary array #include <bits/stdc++.h> using namespace std; #define ROW 4 #define COL 5 // A Trie node class Node { public: bool isEndOfCol; Node *child[2]; // Only two children needed for 0 and 1 } ; // A utility function to allocate memory // for a new Trie node Node* newNode() { Node* temp = new Node(); temp->isEndOfCol = 0; temp->child[0] = temp->child[1] = NULL; return temp; } // Inserts a new matrix row to Trie. // If row is already present, // then returns 0, otherwise insets the row and // return 1 bool insert(Node** root, int (*M)[COL], int row, int col ) { // base case if (*root == NULL) *root = newNode(); // Recur if there are more entries in this row if (col < COL) return insert (&((*root)->child[M[row][col]]), M, row, col + 1); else // If all entries of this row are processed { // unique row found, return 1 if (!((*root)->isEndOfCol)) return (*root)->isEndOfCol = 1; // duplicate row found, return 0 return 0; } } // A utility function to print a row void printRow(int(*M)[COL], int row) { int i; for(i = 0; i < COL; ++i) cout << M[row][i] << " "; cout << endl; } // The main function that prints // all unique rows in a given matrix. void findUniqueRows(int (*M)[COL]) { Node* root = NULL; // create an empty Trie int i; // Iterate through all rows for (i = 0; i < ROW; ++i) // insert row to TRIE if (insert(&root, M, i, 0)) // unique row found, print it printRow(M, i); } // Driver Code int main() { int M[ROW][COL] = {{0, 1, 0, 0, 1}, {1, 0, 1, 1, 0}, {0, 1, 0, 0, 1}, {1, 0, 1, 0, 0}}; findUniqueRows(M); return 0; } // This code is contributed by rathbhupendra
quadratic
quadratic
// C++ code to print unique row in a // given binary matrix #include<bits/stdc++.h> using namespace std; void printArray(int arr[][5], int row, int col) { unordered_set<string> uset; for(int i = 0; i < row; i++) { string s = ""; for(int j = 0; j < col; j++) s += to_string(arr[i][j]); if(uset.count(s) == 0) { uset.insert(s); cout << s << endl; } } } // Driver code int main() { int arr[][5] = {{0, 1, 0, 0, 1}, {1, 0, 1, 1, 0}, {0, 1, 0, 0, 1}, {1, 1, 1, 0, 0}}; printArray(arr, 4, 5); } // This code is contributed by // rathbhupendra
linear
quadratic
// A C++ program to find the count of distinct substring // of a string using trie data structure #include <bits/stdc++.h> #define MAX_CHAR 26 using namespace std; // A Suffix Trie (A Trie of all suffixes) Node class SuffixTrieNode { public: SuffixTrieNode *children[MAX_CHAR]; SuffixTrieNode() // Constructor { // Initialize all child pointers as NULL for (int i = 0; i < MAX_CHAR; i++) children[i] = NULL; } // A recursive function to insert a suffix of the s // in subtree rooted with this node void insertSuffix(string suffix); }; // A Trie of all suffixes class SuffixTrie { SuffixTrieNode *root; int _countNodesInTrie(SuffixTrieNode *); public: // Constructor (Builds a trie of suffies of the given text) SuffixTrie(string s) { root = new SuffixTrieNode(); // Consider all suffixes of given string and insert // them into the Suffix Trie using recursive function // insertSuffix() in SuffixTrieNode class for (int i = 0; i < s.length(); i++) root->insertSuffix(s.substr(i)); } // method to count total nodes in suffix trie int countNodesInTrie() { return _countNodesInTrie(root); } }; // A recursive function to insert a suffix of the s in // subtree rooted with this node void SuffixTrieNode::insertSuffix(string s) { // If string has more characters if (s.length() > 0) { // Find the first character and convert it // into 0-25 range. char cIndex = s.at(0) - 'a'; // If there is no edge for this character, // add a new edge if (children[cIndex] == NULL) children[cIndex] = new SuffixTrieNode(); // Recur for next suffix children[cIndex]->insertSuffix(s.substr(1)); } } // A recursive function to count nodes in trie int SuffixTrie::_countNodesInTrie(SuffixTrieNode* node) { // If all characters of pattern have been processed, if (node == NULL) return 0; int count = 0; for (int i = 0; i < MAX_CHAR; i++) { // if children is not NULL then find count // of all nodes in this subtrie if (node->children[i] != NULL) count += _countNodesInTrie(node->children[i]); } // return count of nodes of subtrie and plus // 1 because of node's own count return (1 + count); } // Returns count of distinct substrings of str int countDistinctSubstring(string str) { // Construct a Trie of all suffixes SuffixTrie sTrie(str); // Return count of nodes in Trie of Suffixes return sTrie.countNodesInTrie(); } // Driver program to test above function int main() { string str = "ababa"; cout << "Count of distinct substrings is " << countDistinctSubstring(str); return 0; }
constant
linear
#include <bits/stdc++.h> using namespace std; // Function to find minimum XOR pair int minXOR(int arr[], int n) { // Sort given array sort(arr, arr + n); int minXor = INT_MAX; int val = 0; // calculate min xor of consecutive pairs for (int i = 0; i < n - 1; i++) { val = arr[i] ^ arr[i + 1]; minXor = min(minXor, val); } return minXor; } // Driver program int main() { int arr[] = { 9, 5, 3 }; int n = sizeof(arr) / sizeof(arr[0]); cout << minXOR(arr, n) << endl; return 0; }
constant
nlogn
// A simple C++ program to find max subarray XOR #include<bits/stdc++.h> using namespace std; int maxSubarrayXOR(int arr[], int n) { int ans = INT_MIN; // Initialize result // Pick starting points of subarrays for (int i=0; i<n; i++) { int curr_xor = 0; // to store xor of current subarray // Pick ending points of subarrays starting with i for (int j=i; j<n; j++) { curr_xor = curr_xor ^ arr[j]; ans = max(ans, curr_xor); } } return ans; } // Driver program to test above functions int main() { int arr[] = {8, 1, 2, 12}; int n = sizeof(arr)/sizeof(arr[0]); cout << "Max subarray XOR is " << maxSubarrayXOR(arr, n); return 0; }
constant
quadratic
// C++ program for a Trie based O(n) solution to find max // subarray XOR #include<bits/stdc++.h> using namespace std; // Assumed int size #define INT_SIZE 32 // A Trie Node struct TrieNode { int value; // Only used in leaf nodes TrieNode *arr[2]; }; // Utility function to create a Trie node TrieNode *newNode() { TrieNode *temp = new TrieNode; temp->value = 0; temp->arr[0] = temp->arr[1] = NULL; return temp; } // Inserts pre_xor to trie with given root void insert(TrieNode *root, int pre_xor) { TrieNode *temp = root; // Start from the msb, insert all bits of // pre_xor into Trie for (int i=INT_SIZE-1; i>=0; i--) { // Find current bit in given prefix bool val = pre_xor & (1<<i); // Create a new node if needed if (temp->arr[val] == NULL) temp->arr[val] = newNode(); temp = temp->arr[val]; } // Store value at leaf node temp->value = pre_xor; } // Finds the maximum XOR ending with last number in // prefix XOR 'pre_xor' and returns the XOR of this maximum // with pre_xor which is maximum XOR ending with last element // of pre_xor. int query(TrieNode *root, int pre_xor) { TrieNode *temp = root; for (int i=INT_SIZE-1; i>=0; i--) { // Find current bit in given prefix bool val = pre_xor & (1<<i); // Traverse Trie, first look for a // prefix that has opposite bit if (temp->arr[1-val]!=NULL) temp = temp->arr[1-val]; // If there is no prefix with opposite // bit, then look for same bit. else if (temp->arr[val] != NULL) temp = temp->arr[val]; } return pre_xor^(temp->value); } // Returns maximum XOR value of a subarray in arr[0..n-1] int maxSubarrayXOR(int arr[], int n) { // Create a Trie and insert 0 into it TrieNode *root = newNode(); insert(root, 0); // Initialize answer and xor of current prefix int result = INT_MIN, pre_xor =0; // Traverse all input array element for (int i=0; i<n; i++) { // update current prefix xor and insert it into Trie pre_xor = pre_xor^arr[i]; insert(root, pre_xor); // Query for current prefix xor in Trie and update // result if required result = max(result, query(root, pre_xor)); } return result; } // Driver program to test above functions int main() { int arr[] = {8, 1, 2, 12}; int n = sizeof(arr)/sizeof(arr[0]); cout << "Max subarray XOR is " << maxSubarrayXOR(arr, n); return 0; }
linear
linear
// C++ code to demonstrate operations of Binary Index Tree #include <iostream> using namespace std; /* n --> No. of elements present in input array. BITree[0..n] --> Array that represents Binary Indexed Tree. arr[0..n-1] --> Input array for which prefix sum is evaluated. */ // Returns sum of arr[0..index]. This function assumes // that the array is preprocessed and partial sums of // array elements are stored in BITree[]. int getSum(int BITree[], int index) { int sum = 0; // Initialize result // index in BITree[] is 1 more than the index in arr[] index = index + 1; // Traverse ancestors of BITree[index] while (index>0) { // Add current element of BITree to sum sum += BITree[index]; // Move index to parent node in getSum View index -= index & (-index); } return sum; } // Updates a node in Binary Index Tree (BITree) at given index // in BITree. The given value 'val' is added to BITree[i] and // all of its ancestors in tree. void updateBIT(int BITree[], int n, int index, int val) { // index in BITree[] is 1 more than the index in arr[] index = index + 1; // Traverse all ancestors and add 'val' while (index <= n) { // Add 'val' to current node of BI Tree BITree[index] += val; // Update index to that of parent in update View index += index & (-index); } } // Constructs and returns a Binary Indexed Tree for given // array of size n. int *constructBITree(int arr[], int n) { // Create and initialize BITree[] as 0 int *BITree = new int[n+1]; for (int i=1; i<=n; i++) BITree[i] = 0; // Store the actual values in BITree[] using update() for (int i=0; i<n; i++) updateBIT(BITree, n, i, arr[i]); // Uncomment below lines to see contents of BITree[] //for (int i=1; i<=n; i++) // cout << BITree[i] << " "; return BITree; } // Driver program to test above functions int main() { int freq[] = {2, 1, 1, 3, 2, 3, 4, 5, 6, 7, 8, 9}; int n = sizeof(freq)/sizeof(freq[0]); int *BITree = constructBITree(freq, n); cout << "Sum of elements in arr[0..5] is " << getSum(BITree, 5); // Let use test the update operation freq[3] += 6; updateBIT(BITree, n, 3, 6); //Update BIT for above change in arr[] cout << "\nSum of elements in arr[0..5] after update is " << getSum(BITree, 5); return 0; }
linear
nlogn
/* C++ program to implement 2D Binary Indexed Tree 2D BIT is basically a BIT where each element is another BIT. Updating by adding v on (x, y) means it's effect will be found throughout the rectangle [(x, y), (max_x, max_y)], and query for (x, y) gives you the result of the rectangle [(0, 0), (x, y)], assuming the total rectangle is [(0, 0), (max_x, max_y)]. So when you query and update on this BIT,you have to be careful about how many times you are subtracting a rectangle and adding it. Simple set union formula works here. So if you want to get the result of a specific rectangle [(x1, y1), (x2, y2)], the following steps are necessary: Query(x1,y1,x2,y2) = getSum(x2, y2)-getSum(x2, y1-1) - getSum(x1-1, y2)+getSum(x1-1, y1-1) Here 'Query(x1,y1,x2,y2)' means the sum of elements enclosed in the rectangle with bottom-left corner's co-ordinates (x1, y1) and top-right corner's co-ordinates - (x2, y2) Constraints -> x1<=x2 and y1<=y2 /\ y | | --------(x2,y2) | | | | | | | | | | --------- | (x1,y1) | |___________________________ (0, 0) x--> In this program we have assumed a square matrix. The program can be easily extended to a rectangular one. */ #include<bits/stdc++.h> using namespace std; #define N 4 // N-->max_x and max_y // A structure to hold the queries struct Query { int x1, y1; // x and y co-ordinates of bottom left int x2, y2; // x and y co-ordinates of top right }; // A function to update the 2D BIT void updateBIT(int BIT[][N+1], int x, int y, int val) { for (; x <= N; x += (x & -x)) { // This loop update all the 1D BIT inside the // array of 1D BIT = BIT[x] for (int yy=y; yy <= N; yy += (yy & -yy)) BIT[x][yy] += val; } return; } // A function to get sum from (0, 0) to (x, y) int getSum(int BIT[][N+1], int x, int y) { int sum = 0; for(; x > 0; x -= x&-x) { // This loop sum through all the 1D BIT // inside the array of 1D BIT = BIT[x] for(int yy=y; yy > 0; yy -= yy&-yy) { sum += BIT[x][yy]; } } return sum; } // A function to create an auxiliary matrix // from the given input matrix void constructAux(int mat[][N], int aux[][N+1]) { // Initialise Auxiliary array to 0 for (int i=0; i<=N; i++) for (int j=0; j<=N; j++) aux[i][j] = 0; // Construct the Auxiliary Matrix for (int j=1; j<=N; j++) for (int i=1; i<=N; i++) aux[i][j] = mat[N-j][i-1]; return; } // A function to construct a 2D BIT void construct2DBIT(int mat[][N], int BIT[][N+1]) { // Create an auxiliary matrix int aux[N+1][N+1]; constructAux(mat, aux); // Initialise the BIT to 0 for (int i=1; i<=N; i++) for (int j=1; j<=N; j++) BIT[i][j] = 0; for (int j=1; j<=N; j++) { for (int i=1; i<=N; i++) { // Creating a 2D-BIT using update function // everytime we/ encounter a value in the // input 2D-array int v1 = getSum(BIT, i, j); int v2 = getSum(BIT, i, j-1); int v3 = getSum(BIT, i-1, j-1); int v4 = getSum(BIT, i-1, j); // Assigning a value to a particular element // of 2D BIT updateBIT(BIT, i, j, aux[i][j]-(v1-v2-v4+v3)); } } return; } // A function to answer the queries void answerQueries(Query q[], int m, int BIT[][N+1]) { for (int i=0; i<m; i++) { int x1 = q[i].x1 + 1; int y1 = q[i].y1 + 1; int x2 = q[i].x2 + 1; int y2 = q[i].y2 + 1; int ans = getSum(BIT, x2, y2)-getSum(BIT, x2, y1-1)- getSum(BIT, x1-1, y2)+getSum(BIT, x1-1, y1-1); printf ("Query(%d, %d, %d, %d) = %d\n", q[i].x1, q[i].y1, q[i].x2, q[i].y2, ans); } return; } // Driver program int main() { int mat[N][N] = {{1, 2, 3, 4}, {5, 3, 8, 1}, {4, 6, 7, 5}, {2, 4, 8, 9}}; // Create a 2D Binary Indexed Tree int BIT[N+1][N+1]; construct2DBIT(mat, BIT); /* Queries of the form - x1, y1, x2, y2 For example the query- {1, 1, 3, 2} means the sub-matrix- y /\ 3 | 1 2 3 4 Sub-matrix 2 | 5 3 8 1 {1,1,3,2} ---> 3 8 1 1 | 4 6 7 5 6 7 5 0 | 2 4 8 9 | --|------ 0 1 2 3 ----> x | Hence sum of the sub-matrix = 3+8+1+6+7+5 = 30 */ Query q[] = {{1, 1, 3, 2}, {2, 3, 3, 3}, {1, 1, 1, 1}}; int m = sizeof(q)/sizeof(q[0]); answerQueries(q, m, BIT); return(0); }
quadratic
nlogn
// A Simple C++ O(n^3) program to count inversions of size 3 #include<bits/stdc++.h> using namespace std; // Returns counts of inversions of size three int getInvCount(int arr[],int n) { int invcount = 0; // Initialize result for (int i=0; i<n-2; i++) { for (int j=i+1; j<n-1; j++) { if (arr[i]>arr[j]) { for (int k=j+1; k<n; k++) { if (arr[j]>arr[k]) invcount++; } } } } return invcount; } // Driver program to test above function int main() { int arr[] = {8, 4, 2, 1}; int n = sizeof(arr)/sizeof(arr[0]); cout << "Inversion Count : " << getInvCount(arr, n); return 0; }
constant
cubic
// A O(n^2) C++ program to count inversions of size 3 #include<bits/stdc++.h> using namespace std; // Returns count of inversions of size 3 int getInvCount(int arr[], int n) { int invcount = 0; // Initialize result for (int i=1; i<n-1; i++) { // Count all smaller elements on right of arr[i] int small = 0; for (int j=i+1; j<n; j++) if (arr[i] > arr[j]) small++; // Count all greater elements on left of arr[i] int great = 0; for (int j=i-1; j>=0; j--) if (arr[i] < arr[j]) great++; // Update inversion count by adding all inversions // that have arr[i] as middle of three elements invcount += great*small; } return invcount; } // Driver program to test above function int main() { int arr[] = {8, 4, 2, 1}; int n = sizeof(arr)/sizeof(arr[0]); cout << "Inversion Count : " << getInvCount(arr, n); return 0; }
constant
quadratic
// C++ program to count the number of inversion // pairs in a 2D matrix #include <bits/stdc++.h> using namespace std; // for simplicity, we are taking N as 4 #define N 4 // Function to update a 2D BIT. It updates the // value of bit[l][r] by adding val to bit[l][r] void update(int l, int r, int val, int bit[][N + 1]) { for (int i = l; i <= N; i += i & -i) for (int j = r; j <= N; j += j & -j) bit[i][j] += val; } // function to find cumulative sum upto // index (l, r) in the 2D BIT long long query(int l, int r, int bit[][N + 1]) { long long ret = 0; for (int i = l; i > 0; i -= i & -i) for (int j = r; j > 0; j -= j & -j) ret += bit[i][j]; return ret; } // function to count and return the number // of inversion pairs in the matrix long long countInversionPairs(int mat[][N]) { // the 2D bit array and initialize it with 0. int bit[N+1][N+1] = {0}; // v will store the tuple (-mat[i][j], i, j) vector<pair<int, pair<int, int> > > v; // store the tuples in the vector v for (int i = 0; i < N; ++i) for (int j = 0; j < N; ++j) // Note that we are not using the pair // (0, 0) because BIT update and query // operations are not done on index 0 v.push_back(make_pair(-mat[i][j], make_pair(i+1, j+1))); // sort the vector v according to the // first element of the tuple, i.e., -mat[i][j] sort(v.begin(), v.end()); // inv_pair_cnt will store the number of // inversion pairs long long inv_pair_cnt = 0; // traverse all the tuples of vector v int i = 0; while (i < v.size()) { int curr = i; // 'pairs' will store the position of each element, // i.e., the pair (i, j) of each tuple of the vector v vector<pair<int, int> > pairs; // consider the current tuple in v and all its // adjacent tuples whose first value, i.e., the // value of –mat[i][j] is same while (curr < v.size() && (v[curr].first == v[i].first)) { // push the position of the current element in 'pairs' pairs.push_back(make_pair(v[curr].second.first, v[curr].second.second)); // add the number of elements which are // less than the current element and lie on the right // side in the vector v inv_pair_cnt += query(v[curr].second.first, v[curr].second.second, bit); curr++; } vector<pair<int, int> >::iterator it; // traverse the 'pairs' vector for (it = pairs.begin(); it != pairs.end(); ++it) { int x = it->first; int y = it->second; // update the position (x, y) by 1 update(x, y, 1, bit); } i = curr; } return inv_pair_cnt; } // Driver program int main() { int mat[N][N] = { { 4, 7, 2, 9 }, { 6, 4, 1, 7 }, { 5, 3, 8, 1 }, { 3, 2, 5, 6 } }; long long inv_pair_cnt = countInversionPairs(mat); cout << "The number of inversion pairs are : " << inv_pair_cnt << endl; return 0; }
quadratic
logn
// Naive algorithm for building suffix array of a given text #include <iostream> #include <cstring> #include <algorithm> using namespace std; // Structure to store information of a suffix struct suffix { int index; char *suff; }; // A comparison function used by sort() to compare two suffixes int cmp(struct suffix a, struct suffix b) { return strcmp(a.suff, b.suff) < 0? 1 : 0; } // This is the main function that takes a string 'txt' of size n as an // argument, builds and return the suffix array for the given string int *buildSuffixArray(char *txt, int n) { // A structure to store suffixes and their indexes struct suffix suffixes[n]; // Store suffixes and their indexes in an array of structures. // The structure is needed to sort the suffixes alphabetically // and maintain their old indexes while sorting for (int i = 0; i < n; i++) { suffixes[i].index = i; suffixes[i].suff = (txt+i); } // Sort the suffixes using the comparison function // defined above. sort(suffixes, suffixes+n, cmp); // Store indexes of all sorted suffixes in the suffix array int *suffixArr = new int[n]; for (int i = 0; i < n; i++) suffixArr[i] = suffixes[i].index; // Return the suffix array return suffixArr; } // A utility function to print an array of given size void printArr(int arr[], int n) { for(int i = 0; i < n; i++) cout << arr[i] << " "; cout << endl; } // Driver program to test above functions int main() { char txt[] = "banana"; int n = strlen(txt); int *suffixArr = buildSuffixArray(txt, n); cout << "Following is suffix array for " << txt << endl; printArr(suffixArr, n); return 0; }
linear
nlogn
// C++ program to insert a node in AVL tree #include<bits/stdc++.h> using namespace std; // An AVL tree node class Node { public: int key; Node *left; Node *right; int height; }; // A utility function to get the // height of the tree int height(Node *N) { if (N == NULL) return 0; return N->height; } // A utility function to get maximum // of two integers int max(int a, int b) { return (a > b)? a : b; } /* Helper function that allocates a new node with the given key and NULL left and right pointers. */ Node* newNode(int key) { Node* node = new Node(); node->key = key; node->left = NULL; node->right = NULL; node->height = 1; // new node is initially // added at leaf return(node); } // A utility function to right // rotate subtree rooted with y // See the diagram given above. Node *rightRotate(Node *y) { Node *x = y->left; Node *T2 = x->right; // Perform rotation x->right = y; y->left = T2; // Update heights y->height = max(height(y->left), height(y->right)) + 1; x->height = max(height(x->left), height(x->right)) + 1; // Return new root return x; } // A utility function to left // rotate subtree rooted with x // See the diagram given above. Node *leftRotate(Node *x) { Node *y = x->right; Node *T2 = y->left; // Perform rotation y->left = x; x->right = T2; // Update heights x->height = max(height(x->left), height(x->right)) + 1; y->height = max(height(y->left), height(y->right)) + 1; // Return new root return y; } // Get Balance factor of node N int getBalance(Node *N) { if (N == NULL) return 0; return height(N->left) - height(N->right); } // Recursive function to insert a key // in the subtree rooted with node and // returns the new root of the subtree. Node* insert(Node* node, int key) { /* 1. Perform the normal BST insertion */ if (node == NULL) return(newNode(key)); if (key < node->key) node->left = insert(node->left, key); else if (key > node->key) node->right = insert(node->right, key); else // Equal keys are not allowed in BST return node; /* 2. Update height of this ancestor node */ node->height = 1 + max(height(node->left), height(node->right)); /* 3. Get the balance factor of this ancestor node to check whether this node became unbalanced */ int balance = getBalance(node); // If this node becomes unbalanced, then // there are 4 cases // Left Left Case if (balance > 1 && key < node->left->key) return rightRotate(node); // Right Right Case if (balance < -1 && key > node->right->key) return leftRotate(node); // Left Right Case if (balance > 1 && key > node->left->key) { node->left = leftRotate(node->left); return rightRotate(node); } // Right Left Case if (balance < -1 && key < node->right->key) { node->right = rightRotate(node->right); return leftRotate(node); } /* return the (unchanged) node pointer */ return node; } // A utility function to print preorder // traversal of the tree. // The function also prints height // of every node void preOrder(Node *root) { if(root != NULL) { cout << root->key << " "; preOrder(root->left); preOrder(root->right); } } // Driver Code int main() { Node *root = NULL; /* Constructing tree given in the above figure */ root = insert(root, 10); root = insert(root, 20); root = insert(root, 30); root = insert(root, 40); root = insert(root, 50); root = insert(root, 25); /* The constructed AVL Tree would be 30 / \ 20 40 / \ \ 10 25 50 */ cout << "Preorder traversal of the " "constructed AVL tree is \n"; preOrder(root); return 0; } // This code is contributed by // rathbhupendra
constant
nlogn
// C++ program to find N'th element in a set formed // by sum of two arrays #include<bits/stdc++.h> using namespace std; //Function to calculate the set of sums int calculateSetOfSum(int arr1[], int size1, int arr2[], int size2, int N) { // Insert each pair sum into set. Note that a set // stores elements in sorted order and unique elements set<int> s; for (int i=0 ; i < size1; i++) for (int j=0; j < size2; j++) s.insert(arr1[i]+arr2[j]); // If set has less than N elements if (s.size() < N) return -1; // Find N'tb item in set and return it set<int>::iterator it = s.begin(); for (int count=1; count<N; count++) it++; return *it; } // Driver code int main() { int arr1[] = {1, 2}; int size1 = sizeof(arr1) / sizeof(arr1[0]); int arr2[] = {3, 4}; int size2 = sizeof(arr2) / sizeof(arr2[0]); int N = 3; int res = calculateSetOfSum(arr1, size1, arr2, size2, N); if (res == -1) cout << "N'th term doesn't exists in set"; else cout << "N'th element in the set of sums is " << res; return 0; }
linear
quadratic
#include <iostream> using namespace std; void constructLowerArray(int arr[], int* countSmaller, int n) { int i, j; // Initialize all the counts in // countSmaller array as 0 for (i = 0; i < n; i++) countSmaller[i] = 0; for (i = 0; i < n; i++) { for (j = i + 1; j < n; j++) { if (arr[j] < arr[i]) countSmaller[i]++; } } } // Utility function that prints // out an array on a line void printArray(int arr[], int size) { int i; for (i = 0; i < size; i++) cout << arr[i] << " "; cout << "\n"; } // Driver code int main() { int arr[] = { 12, 1, 2, 3, 0, 11, 4 }; int n = sizeof(arr) / sizeof(arr[0]); int* low = (int*)malloc(sizeof(int) * n); constructLowerArray(arr, low, n); printArray(low, n); return 0; } // This code is contributed by Hemant Jain
constant
quadratic
#include <bits/stdc++.h> using namespace std; void merge(vector<pair<int, int> >& v, vector<int>& ans, int l, int mid, int h) { vector<pair<int, int> > t; // temporary array for merging both halves int i = l; int j = mid + 1; while (i < mid + 1 && j <= h) { // v[i].first is greater than all // the elements from j till h. if (v[i].first > v[j].first) { ans[v[i].second] += (h - j + 1); t.push_back(v[i]); i++; } else { t.push_back(v[j]); j++; } } // if any elements left in left array while (i <= mid) t.push_back(v[i++]); // if any elements left in right array while (j <= h) t.push_back(v[j++]); // putting elements back in main array in // descending order for (int k = 0, i = l; i <= h; i++, k++) v[i] = t[k]; } void mergesort(vector<pair<int, int> >& v, vector<int>& ans, int i, int j) { if (i < j) { int mid = (i + j) / 2; // calling mergesort for left half mergesort(v, ans, i, mid); // calling mergesort for right half mergesort(v, ans, mid + 1, j); // merging both halves and generating answer merge(v, ans, i, mid, j); } } vector<int> constructLowerArray(int* arr, int n) { vector<pair<int, int> > v; // inserting elements and corresponding index // as pair for (int i = 0; i < n; i++) v.push_back({ arr[i], i }); // answer array for keeping count // initialized by 0, vector<int> ans(n, 0); // calling mergesort mergesort(v, ans, 0, n - 1); return ans; } // Driver Code Starts. int main() { int arr[] = { 12, 1, 2, 3, 0, 11, 4 }; int n = sizeof(arr) / sizeof(arr[0]); auto ans = constructLowerArray(arr, n); for (auto x : ans) { cout << x << " "; } cout << "\n"; return 0; } // Driver code ends. // This code is contributed by Manjeet Singh
linear
nlogn
#include <iostream> using namespace std; #include <stdio.h> #include <stdlib.h> // An AVL tree node struct node { int key; struct node* left; struct node* right; int height; // size of the tree rooted // with this node int size; }; // A utility function to get // maximum of two integers int max(int a, int b); // A utility function to get // height of the tree rooted with N int height(struct node* N) { if (N == NULL) return 0; return N->height; } // A utility function to size // of the tree of rooted with N int size(struct node* N) { if (N == NULL) return 0; return N->size; } // A utility function to // get maximum of two integers int max(int a, int b) { return (a > b) ? a : b; } // Helper function that allocates a // new node with the given key and // NULL left and right pointers. struct node* newNode(int key) { struct node* node = (struct node*)malloc(sizeof(struct node)); node->key = key; node->left = NULL; node->right = NULL; // New node is initially added at leaf node->height = 1; node->size = 1; return (node); } // A utility function to right rotate // subtree rooted with y struct node* rightRotate(struct node* y) { struct node* x = y->left; struct node* T2 = x->right; // Perform rotation x->right = y; y->left = T2; // Update heights y->height = max(height(y->left), height(y->right)) + 1; x->height = max(height(x->left), height(x->right)) + 1; // Update sizes y->size = size(y->left) + size(y->right) + 1; x->size = size(x->left) + size(x->right) + 1; // Return new root return x; } // A utility function to left rotate // subtree rooted with x struct node* leftRotate(struct node* x) { struct node* y = x->right; struct node* T2 = y->left; // Perform rotation y->left = x; x->right = T2; // Update heights x->height = max(height(x->left), height(x->right)) + 1; y->height = max(height(y->left), height(y->right)) + 1; // Update sizes x->size = size(x->left) + size(x->right) + 1; y->size = size(y->left) + size(y->right) + 1; // Return new root return y; } // Get Balance factor of node N int getBalance(struct node* N) { if (N == NULL) return 0; return height(N->left) - height(N->right); } // Inserts a new key to the tree rotted with // node. Also, updates *count to contain count // of smaller elements for the new key struct node* insert(struct node* node, int key, int* count) { // 1. Perform the normal BST rotation if (node == NULL) return (newNode(key)); if (key < node->key) node->left = insert(node->left, key, count); else { node->right = insert(node->right, key, count); // UPDATE COUNT OF SMALLER ELEMENTS FOR KEY *count = *count + size(node->left) + 1; } // 2.Update height and size of this ancestor node node->height = max(height(node->left), height(node->right)) + 1; node->size = size(node->left) + size(node->right) + 1; // 3. Get the balance factor of this // ancestor node to check whether this // node became unbalanced int balance = getBalance(node); // If this node becomes unbalanced, // then there are 4 cases // Left Left Case if (balance > 1 && key < node->left->key) return rightRotate(node); // Right Right Case if (balance < -1 && key > node->right->key) return leftRotate(node); // Left Right Case if (balance > 1 && key > node->left->key) { node->left = leftRotate(node->left); return rightRotate(node); } // Right Left Case if (balance < -1 && key < node->right->key) { node->right = rightRotate(node->right); return leftRotate(node); } // Return the (unchanged) node pointer return node; } // The following function updates the // countSmaller array to contain count of // smaller elements on right side. void constructLowerArray(int arr[], int countSmaller[], int n) { int i, j; struct node* root = NULL; // Initialize all the counts in // countSmaller array as 0 for (i = 0; i < n; i++) countSmaller[i] = 0; // Starting from rightmost element, // insert all elements one by one in // an AVL tree and get the count of // smaller elements for (i = n - 1; i >= 0; i--) { root = insert(root, arr[i], &countSmaller[i]); } } // Utility function that prints out an // array on a line void printArray(int arr[], int size) { int i; cout << "\n"; for (i = 0; i < size; i++) cout << arr[i] << " "; } // Driver code int main() { int arr[] = { 12, 1, 2, 3, 0, 11, 4 }; int n = sizeof(arr) / sizeof(arr[0]); int* low = (int*)malloc(sizeof(int) * n); constructLowerArray(arr, low, n); printArray(low, n); return 0; } // This code is contributed by Hemant Jain
linear
nlogn
#include <bits/stdc++.h> using namespace std; // BST node structure class Node { public: int val; int count; Node* left; Node* right; // Constructor Node(int num1, int num2) { this->val = num1; this->count = num2; this->left = this->right = NULL; } }; // Function to addNode and find the smaller // elements on the right side int addNode(Node*& root, int value, int countSmaller) { // Base case if (root == NULL) { root = new Node(value, 0); return countSmaller; } if (root->val < value) { return root->count + addNode(root->right, value, countSmaller + 1); } else { root->count++; return addNode(root->left, value, countSmaller); } } // Driver code int main() { ios_base::sync_with_stdio(false); cin.tie(0); int data[] = { 12, 1, 2, 3, 0, 11, 4 }; int size = sizeof(data) / sizeof(data[0]); int ans[size] = { 0 }; Node* root = NULL; for (int i = size - 1; i >= 0; i--) { ans[i] = addNode(root, data[i], 0); } for (int i = 0; i < size; i++) cout << ans[i] << " "; return 0; } // This code is contributed by divyanshu gupta
linear
quadratic
// C++ program to sort an array according absolute // difference with x. #include <bits/stdc++.h> using namespace std; // Function to sort an array according absolute // difference with x. void rearrange(int arr[], int n, int x) { multimap<int, int> m; multimap<int, int>::iterator it; // Store values in a map with the difference // with X as key for (int i = 0; i < n; i++) m.insert(make_pair(abs(x - arr[i]), arr[i])); // Update the values of array int i = 0; for (it = m.begin(); it != m.end(); it++) arr[i++] = (*it).second; } // Function to print the array void printArray(int arr[], int n) { for (int i = 0; i < n; i++) cout << arr[i] << " "; } // Driver code int main() { int arr[] = { 10, 5, 3, 9, 2 }; int n = sizeof(arr) / sizeof(arr[0]); int x = 7; // Function call rearrange(arr, n, x); printArray(arr, n); return 0; }
linear
nlogn
// CPP program for the above approach #include <bits/stdc++.h> using namespace std; void rearrange(int arr[], int n, int x) { /* We can send the value x into lambda expression as follows: [capture]() { //statements //capture value can be used inside } */ stable_sort(arr, arr + n, [x](int a, int b) { if (abs(a - x) < abs(b - x)) return true; else return false; }); } // Driver code int main() { int arr[] = { 10, 5, 3, 9, 2 }; int n = sizeof(arr) / sizeof(arr[0]); int x = 7; // Function call rearrange(arr, n, x); for (int i = 0; i < n; i++) cout << arr[i] << " "; return 0; }
constant
nlogn
// C++ program to find maximum product of an increasing // subsequence of size 3 #include <bits/stdc++.h> using namespace std; // Returns maximum product of an increasing subsequence of // size 3 in arr[0..n-1]. If no such subsequence exists, // then it returns INT_MIN long long int maxProduct(int arr[], int n) { int result = INT_MIN; // T.C : O(n^3) for (int i = 0; i < n; i++) { for (int j = i + 1; j < n; j++) { for (int k = j + 1; k < n; k++) { result = max(result, arr[i] * arr[j] * arr[k]); } } } return result; } // Driver Program int main() { int arr[] = { 10, 11, 9, 5, 6, 1, 20 }; int n = sizeof(arr) / sizeof(arr[0]); cout << maxProduct(arr, n) << endl; return 0; }
constant
cubic
// C++ program to find maximum product of an increasing // subsequence of size 3 #include <bits/stdc++.h> using namespace std; // Returns maximum product of an increasing subsequence of // size 3 in arr[0..n-1]. If no such subsequence exists, // then it returns INT_MIN long long int maxProduct(int arr[], int n) { // An array ti store closest smaller element on left // side of every element. If there is no such element // on left side, then smaller[i] be -1. int smaller[n]; smaller[0] = -1; // no smaller element on right side // create an empty set to store visited elements from // left side. Set can also quickly find largest smaller // of an element. set<int> S; for (int i = 0; i < n; i++) { // insert arr[i] into the set S auto j = S.insert(arr[i]); auto itc = j.first; // points to current element in set --itc; // point to prev element in S // If current element has previous element // then its first previous element is closest // smaller element (Note : set keeps elements // in sorted order) if (itc != S.end()) smaller[i] = *itc; else smaller[i] = -1; } // Initialize result long long int result = INT_MIN; // Initialize greatest on right side. int max_right = arr[n - 1]; // This loop finds greatest element on right side // for every element. It also updates result when // required. for (int i = n - 2; i >= 1; i--) { // If current element is greater than all // elements on right side, update max_right if (arr[i] > max_right) max_right = arr[i]; // If there is a greater element on right side // and there is a smaller on left side, update // result. else if (smaller[i] != -1) result = max((long long int)(smaller[i] * arr[i] * max_right), result); } return result; } // Driver Program int main() { int arr[] = { 10, 11, 9, 5, 6, 1, 20 }; int n = sizeof(arr) / sizeof(arr[0]); cout << maxProduct(arr, n) << endl; return 0; }
linear
nlogn
// C++ Code for the above approach #include <bits/stdc++.h> using namespace std; /* A binary tree node has data, a pointer to left child and a pointer to right child */ class Node { public: int data; Node* left; Node* right; }; // Function to return a new Node Node* newNode(int data) { Node* node = new Node(); node->data = data; node->left = NULL; node->right = NULL; return (node); } // Function to convert bst to // a doubly linked list void bstTodll(Node* root, Node*& head) { // if root is NULL if (!root) return; // Convert right subtree recursively bstTodll(root->right, head); // Update root root->right = head; // if head is not NULL if (head) { // Update left of the head head->left = root; } // Update head head = root; // Convert left subtree recursively bstTodll(root->left, head); } // Function to merge two sorted linked list Node* mergeLinkedList(Node* head1, Node* head2) { /*Create head and tail for result list*/ Node* head = NULL; Node* tail = NULL; while (head1 && head2) { if (head1->data < head2->data) { if (!head) head = head1; else { tail->right = head1; head1->left = tail; } tail = head1; head1 = head1->right; } else { if (!head) head = head2; else { tail->right = head2; head2->left = tail; } tail = head2; head2 = head2->right; } } while (head1) { tail->right = head1; head1->left = tail; tail = head1; head1 = head1->right; } while (head2) { tail->right = head2; head2->left = tail; tail = head2; head2 = head2->right; } // Return the created DLL return head; } // function to convert list to bst Node* sortedListToBST(Node*& head, int n) { // if no element is left or head is null if (n <= 0 || !head) return NULL; // Create left part from the list recursively Node* left = sortedListToBST(head, n / 2); Node* root = head; root->left = left; head = head->right; // Create left part from the list recursively root->right = sortedListToBST(head, n - (n / 2) - 1); // Return the root of BST return root; } // This function merges two balanced BSTs Node* mergeTrees(Node* root1, Node* root2, int m, int n) { // Convert BSTs into sorted Doubly Linked Lists Node* head1 = NULL; bstTodll(root1, head1); head1->left = NULL; Node* head2 = NULL; bstTodll(root2, head2); head2->left = NULL; // Merge the two sorted lists into one Node* head = mergeLinkedList(head1, head2); // Construct a tree from the merged lists return sortedListToBST(head, m + n); } void printInorder(Node* node) { // if current node is NULL if (!node) { return; } printInorder(node->left); // Print node of current data cout << node->data << " "; printInorder(node->right); } /* Driver code*/ int main() { /* Create following tree as first balanced BST 100 / \ 50 300 / \ 20 70 */ Node* root1 = newNode(100); root1->left = newNode(50); root1->right = newNode(300); root1->left->left = newNode(20); root1->left->right = newNode(70); /* Create following tree as second balanced BST 80 / \ 40 120 */ Node* root2 = newNode(80); root2->left = newNode(40); root2->right = newNode(120); // Function Call Node* mergedTree = mergeTrees(root1, root2, 5, 3); cout << "Following is Inorder traversal of the merged " "tree \n"; printInorder(mergedTree); return 0; } // This code is contributed by Tapesh(tapeshdua420)
constant
linear
/* CPP program to check if a tree is height-balanced or not */ #include <bits/stdc++.h> using namespace std; /* A binary tree node has data, pointer to left child and a pointer to right child */ class Node { public: int data; Node* left; Node* right; Node(int d) { int data = d; left = right = NULL; } }; // Function to calculate the height of a tree int height(Node* node) { // base case tree is empty if (node == NULL) return 0; // If tree is not empty then // height = 1 + max of left height // and right heights return 1 + max(height(node->left), height(node->right)); } // Returns true if binary tree // with root as root is height-balanced bool isBalanced(Node* root) { // for height of left subtree int lh; // for height of right subtree int rh; // If tree is empty then return true if (root == NULL) return 1; // Get the height of left and right sub trees lh = height(root->left); rh = height(root->right); if (abs(lh - rh) <= 1 && isBalanced(root->left) && isBalanced(root->right)) return 1; // If we reach here then tree is not height-balanced return 0; } // Driver code int main() { Node* root = new Node(1); root->left = new Node(2); root->right = new Node(3); root->left->left = new Node(4); root->left->right = new Node(5); root->left->left->left = new Node(8); if (isBalanced(root)) cout << "Tree is balanced"; else cout << "Tree is not balanced"; return 0; } // This code is contributed by rathbhupendra
linear
quadratic
// C++ code to implement the approach #include <bits/stdc++.h> using namespace std; // Structure of a tree node struct Node { int key; struct Node* left; struct Node* right; Node(int k) { key = k; left = right = NULL; } }; // Function to check if tree is height balanced int isBalanced(Node* root) { if (root == NULL) return 0; int lh = isBalanced(root->left); if (lh == -1) return -1; int rh = isBalanced(root->right); if (rh == -1) return -1; if (abs(lh - rh) > 1) return -1; else return max(lh, rh) + 1; } // Driver code int main() { Node* root = new Node(10); root->left = new Node(5); root->right = new Node(30); root->right->left = new Node(15); root->right->right = new Node(20); if (isBalanced(root) > 0) cout << "Balanced"; else cout << "Not Balanced"; return 0; }
linear
linear
// C++ program to find number of islands // using Disjoint Set data structure. #include <bits/stdc++.h> using namespace std; // Class to represent // Disjoint Set Data structure class DisjointUnionSets { vector<int> rank, parent; int n; public: DisjointUnionSets(int n) { rank.resize(n); parent.resize(n); this->n = n; makeSet(); } void makeSet() { // Initially, all elements // are in their own set. for (int i = 0; i < n; i++) parent[i] = i; } // Finds the representative of the set // that x is an element of int find(int x) { if (parent[x] != x) { // if x is not the parent of itself, // then x is not the representative of // its set. // so we recursively call Find on its parent // and move i's node directly under the // representative of this set parent[x]=find(parent[x]); } return parent[x]; } // Unites the set that includes x and the set // that includes y void Union(int x, int y) { // Find the representatives(or the root nodes) // for x an y int xRoot = find(x); int yRoot = find(y); // Elements are in the same set, // no need to unite anything. if (xRoot == yRoot) return; // If x's rank is less than y's rank // Then move x under y so that // depth of tree remains less if (rank[xRoot] < rank[yRoot]) parent[xRoot] = yRoot; // Else if y's rank is less than x's rank // Then move y under x so that depth of tree // remains less else if (rank[yRoot] < rank[xRoot]) parent[yRoot] = xRoot; else // Else if their ranks are the same { // Then move y under x (doesn't matter // which one goes where) parent[yRoot] = xRoot; // And increment the result tree's // rank by 1 rank[xRoot] = rank[xRoot] + 1; } } }; // Returns number of islands in a[][] int countIslands(vector<vector<int>>a) { int n = a.size(); int m = a[0].size(); DisjointUnionSets *dus = new DisjointUnionSets(n * m); /* The following loop checks for its neighbours and unites the indexes if both are 1. */ for (int j = 0; j < n; j++) { for (int k = 0; k < m; k++) { // If cell is 0, nothing to do if (a[j][k] == 0) continue; // Check all 8 neighbours and do a Union // with neighbour's set if neighbour is // also 1 if (j + 1 < n && a[j + 1][k] == 1) dus->Union(j * (m) + k, (j + 1) * (m) + k); if (j - 1 >= 0 && a[j - 1][k] == 1) dus->Union(j * (m) + k, (j - 1) * (m) + k); if (k + 1 < m && a[j][k + 1] == 1) dus->Union(j * (m) + k, (j) * (m) + k + 1); if (k - 1 >= 0 && a[j][k - 1] == 1) dus->Union(j * (m) + k, (j) * (m) + k - 1); if (j + 1 < n && k + 1 < m && a[j + 1][k + 1] == 1) dus->Union(j * (m) + k, (j + 1) * (m) + k + 1); if (j + 1 < n && k - 1 >= 0 && a[j + 1][k - 1] == 1) dus->Union(j * m + k, (j + 1) * (m) + k - 1); if (j - 1 >= 0 && k + 1 < m && a[j - 1][k + 1] == 1) dus->Union(j * m + k, (j - 1) * m + k + 1); if (j - 1 >= 0 && k - 1 >= 0 && a[j - 1][k - 1] == 1) dus->Union(j * m + k, (j - 1) * m + k - 1); } } // Array to note down frequency of each set int *c = new int[n * m]; int numberOfIslands = 0; for (int j = 0; j < n; j++) { for (int k = 0; k < m; k++) { if (a[j][k] == 1) { int x = dus->find(j * m + k); // If frequency of set is 0, // increment numberOfIslands if (c[x] == 0) { numberOfIslands++; c[x]++; } else c[x]++; } } } return numberOfIslands; } // Driver Code int main(void) { vector<vector<int>>a = {{1, 1, 0, 0, 0}, {0, 1, 0, 0, 1}, {1, 0, 0, 1, 1}, {0, 0, 0, 0, 0}, {1, 0, 1, 0, 1}}; cout << "Number of Islands is: " << countIslands(a) << endl; } // This code is contributed by ankush_953
quadratic
quadratic
// C++ program to find the height of the generic // tree(n-ary tree) if parent array is given #include <bits/stdc++.h> using namespace std; // function to fill the height vector int rec(int i, int parent[], vector<int> height) { // if we have reached root node the // return 1 as height of root node if (parent[i] == -1) { return 1; } // if we have calculated height of a // node then return if if (height[i] != -1) { return height[i]; } // height from root to a node = height // from root to nodes parent + 1 height[i] = rec(parent[i], parent, height) + 1; // return nodes height return height[i]; } // function to find the height of tree int findHeight(int* parent, int n) { int res = 0; // vector to store heights of all nodes vector<int> height(n, -1); for (int i = 0; i < n; i++) { res = max(res, rec(i, parent, height)); } return res; } // Driver program int main() { int parent[] = { -1, 0, 1, 6, 6, 0, 0, 2, 7 }; int n = sizeof(parent) / sizeof(parent[0]); int height = findHeight(parent, n); cout << "Height of the given tree is: " << height << endl; return 0; }
linear
linear
// C++ program to find number // of children of given node #include <bits/stdc++.h> using namespace std; // Represents a node of an n-ary tree class Node { public: int key; vector<Node*> child; Node(int data) { key = data; } }; // Function to calculate number // of children of given node int numberOfChildren(Node* root, int x) { // initialize the numChildren as 0 int numChildren = 0; if (root == NULL) return 0; // Creating a queue and pushing the root queue<Node*> q; q.push(root); while (!q.empty()) { int n = q.size(); // If this node has children while (n > 0) { // Dequeue an item from queue and // check if it is equal to x // If YES, then return number of children Node* p = q.front(); q.pop(); if (p->key == x) { numChildren = numChildren + p->child.size(); return numChildren; } // Enqueue all children of the dequeued item for (int i = 0; i < p->child.size(); i++) q.push(p->child[i]); n--; } } return numChildren; } // Driver program int main() { // Creating a generic tree Node* root = new Node(20); (root->child).push_back(new Node(2)); (root->child).push_back(new Node(34)); (root->child).push_back(new Node(50)); (root->child).push_back(new Node(60)); (root->child).push_back(new Node(70)); (root->child[0]->child).push_back(new Node(15)); (root->child[0]->child).push_back(new Node(20)); (root->child[1]->child).push_back(new Node(30)); (root->child[2]->child).push_back(new Node(40)); (root->child[2]->child).push_back(new Node(100)); (root->child[2]->child).push_back(new Node(20)); (root->child[0]->child[1]->child).push_back(new Node(25)); (root->child[0]->child[1]->child).push_back(new Node(50)); // Node whose number of // children is to be calculated int x = 50; // Function calling cout << numberOfChildren(root, x) << endl; return 0; }
linear
linear
// C++ program to find sum of all // elements in generic tree #include <bits/stdc++.h> using namespace std; // Represents a node of an n-ary tree struct Node { int key; vector<Node*> child; }; // Utility function to create a new tree node Node* newNode(int key) { Node* temp = new Node; temp->key = key; return temp; } // Function to compute the sum // of all elements in generic tree int sumNodes(Node* root) { // initialize the sum variable int sum = 0; if (root == NULL) return 0; // Creating a queue and pushing the root queue<Node*> q; q.push(root); while (!q.empty()) { int n = q.size(); // If this node has children while (n > 0) { // Dequeue an item from queue and // add it to variable "sum" Node* p = q.front(); q.pop(); sum += p->key; // Enqueue all children of the dequeued item for (int i = 0; i < p->child.size(); i++) q.push(p->child[i]); n--; } } return sum; } // Driver program int main() { // Creating a generic tree Node* root = newNode(20); (root->child).push_back(newNode(2)); (root->child).push_back(newNode(34)); (root->child).push_back(newNode(50)); (root->child).push_back(newNode(60)); (root->child).push_back(newNode(70)); (root->child[0]->child).push_back(newNode(15)); (root->child[0]->child).push_back(newNode(20)); (root->child[1]->child).push_back(newNode(30)); (root->child[2]->child).push_back(newNode(40)); (root->child[2]->child).push_back(newNode(100)); (root->child[2]->child).push_back(newNode(20)); (root->child[0]->child[1]->child).push_back(newNode(25)); (root->child[0]->child[1]->child).push_back(newNode(50)); cout << sumNodes(root) << endl; return 0; }
linear
linear
// C++ program to create a tree with left child // right sibling representation. #include <bits/stdc++.h> using namespace std; struct Node { int data; struct Node* next; struct Node* child; }; // Creating new Node Node* newNode(int data) { Node* newNode = new Node; newNode->next = newNode->child = NULL; newNode->data = data; return newNode; } // Adds a sibling to a list with starting with n Node* addSibling(Node* n, int data) { if (n == NULL) return NULL; while (n->next) n = n->next; return (n->next = newNode(data)); } // Add child Node to a Node Node* addChild(Node* n, int data) { if (n == NULL) return NULL; // Check if child list is not empty. if (n->child) return addSibling(n->child, data); else return (n->child = newNode(data)); } // Traverses tree in level order void traverseTree(Node* root) { // Corner cases if (root == NULL) return; cout << root->data << " "; if (root->child == NULL) return; // Create a queue and enqueue root queue<Node*> q; Node* curr = root->child; q.push(curr); while (!q.empty()) { // Take out an item from the queue curr = q.front(); q.pop(); // Print next level of taken out item and enqueue // next level's children while (curr != NULL) { cout << curr->data << " "; if (curr->child != NULL) { q.push(curr->child); } curr = curr->next; } } } // Driver code int main() { Node* root = newNode(10); Node* n1 = addChild(root, 2); Node* n2 = addChild(root, 3); Node* n3 = addChild(root, 4); Node* n4 = addChild(n3, 6); Node* n5 = addChild(root, 5); Node* n6 = addChild(n5, 7); Node* n7 = addChild(n5, 8); Node* n8 = addChild(n5, 9); traverseTree(root); return 0; }
linear
linear
// C++ program to count number of nodes // which has more children than its parent #include<bits/stdc++.h> using namespace std; // function to count number of nodes // which has more children than its parent int countNodes(vector<int> adj[], int root) { int count = 0; // queue for applying BFS queue<int> q; // BFS algorithm q.push(root); while (!q.empty()) { int node = q.front(); q.pop(); // traverse children of node for( int i=0;i<adj[node].size();i++) { // children of node int children = adj[node][i]; // if number of childs of children // is greater than number of childs // of node, then increment count if (adj[children].size() > adj[node].size()) count++; q.push(children); } } return count; } // Driver program to test above functions int main() { // adjacency list for n-ary tree vector<int> adj[10]; // construct n ary tree as shown // in above diagram adj[1].push_back(2); adj[1].push_back(3); adj[2].push_back(4); adj[2].push_back(5); adj[2].push_back(6); adj[3].push_back(9); adj[5].push_back(7); adj[5].push_back(8); int root = 1; cout << countNodes(adj, root); return 0; }
linear
linear
// C++ program to generate short url from integer id and // integer id back from short url. #include<iostream> #include<algorithm> #include<string> using namespace std; // Function to generate a short url from integer ID string idToShortURL(long int n) { // Map to store 62 possible characters char map[] = "abcdefghijklmnopqrstuvwxyzABCDEF" "GHIJKLMNOPQRSTUVWXYZ0123456789"; string shorturl; // Convert given integer id to a base 62 number while (n) { // use above map to store actual character // in short url shorturl.push_back(map[n%62]); n = n/62; } // Reverse shortURL to complete base conversion reverse(shorturl.begin(), shorturl.end()); return shorturl; } // Function to get integer ID back from a short url long int shortURLtoID(string shortURL) { long int id = 0; // initialize result // A simple base conversion logic for (int i=0; i < shortURL.length(); i++) { if ('a' <= shortURL[i] && shortURL[i] <= 'z') id = id*62 + shortURL[i] - 'a'; if ('A' <= shortURL[i] && shortURL[i] <= 'Z') id = id*62 + shortURL[i] - 'A' + 26; if ('0' <= shortURL[i] && shortURL[i] <= '9') id = id*62 + shortURL[i] - '0' + 52; } return id; } // Driver program to test above function int main() { int n = 12345; string shorturl = idToShortURL(n); cout << "Generated short url is " << shorturl << endl; cout << "Id from url is " << shortURLtoID(shorturl); return 0; }
constant
linear
// A C++ program to implement Cartesian Tree sort // Note that in this program we will build a min-heap // Cartesian Tree and not max-heap. #include<bits/stdc++.h> using namespace std; /* A binary tree node has data, pointer to left child and a pointer to right child */ struct Node { int data; Node *left, *right; }; // Creating a shortcut for int, Node* pair type typedef pair<int, Node*> iNPair; // This function sorts by pushing and popping the // Cartesian Tree nodes in a pre-order like fashion void pQBasedTraversal(Node* root) { // We will use a priority queue to sort the // partially-sorted data efficiently. // Unlike Heap, Cartesian tree makes use of // the fact that the data is partially sorted priority_queue <iNPair, vector<iNPair>, greater<iNPair>> pQueue; pQueue.push (make_pair (root->data, root)); // Resembles a pre-order traverse as first data // is printed then the left and then right child. while (! pQueue.empty()) { iNPair popped_pair = pQueue.top(); printf("%d ", popped_pair.first); pQueue.pop(); if (popped_pair.second->left != NULL) pQueue.push (make_pair(popped_pair.second->left->data, popped_pair.second->left)); if (popped_pair.second->right != NULL) pQueue.push (make_pair(popped_pair.second->right->data, popped_pair.second->right)); } return; } Node *buildCartesianTreeUtil(int root, int arr[], int parent[], int leftchild[], int rightchild[]) { if (root == -1) return NULL; Node *temp = new Node; temp->data = arr[root]; temp->left = buildCartesianTreeUtil(leftchild[root], arr, parent, leftchild, rightchild); temp->right = buildCartesianTreeUtil(rightchild[root], arr, parent, leftchild, rightchild); return temp ; } // A function to create the Cartesian Tree in O(N) time Node *buildCartesianTree(int arr[], int n) { // Arrays to hold the index of parent, left-child, // right-child of each number in the input array int parent[n], leftchild[n], rightchild[n]; // Initialize all array values as -1 memset(parent, -1, sizeof(parent)); memset(leftchild, -1, sizeof(leftchild)); memset(rightchild, -1, sizeof(rightchild)); // 'root' and 'last' stores the index of the root and the // last processed of the Cartesian Tree. // Initially we take root of the Cartesian Tree as the // first element of the input array. This can change // according to the algorithm int root = 0, last; // Starting from the second element of the input array // to the last on scan across the elements, adding them // one at a time. for (int i = 1; i <= n - 1; i++) { last = i-1; rightchild[i] = -1; // Scan upward from the node's parent up to // the root of the tree until a node is found // whose value is smaller than the current one // This is the same as Step 2 mentioned in the // algorithm while (arr[last] >= arr[i] && last != root) last = parent[last]; // arr[i] is the smallest element yet; make it // new root if (arr[last] >= arr[i]) { parent[root] = i; leftchild[i] = root; root = i; } // Just insert it else if (rightchild[last] == -1) { rightchild[last] = i; parent[i] = last; leftchild[i] = -1; } // Reconfigure links else { parent[rightchild[last]] = i; leftchild[i] = rightchild[last]; rightchild[last]= i; parent[i] = last; } } // Since the root of the Cartesian Tree has no // parent, so we assign it -1 parent[root] = -1; return (buildCartesianTreeUtil (root, arr, parent, leftchild, rightchild)); } // Sorts an input array int printSortedArr(int arr[], int n) { // Build a cartesian tree Node *root = buildCartesianTree(arr, n); printf("The sorted array is-\n"); // Do pr-order traversal and insert // in priority queue pQBasedTraversal(root); } /* Driver program to test above functions */ int main() { /* Given input array- {5,10,40,30,28}, it's corresponding unique Cartesian Tree is- 5 \ 10 \ 28 / 30 / 40 */ int arr[] = {5, 10, 40, 30, 28}; int n = sizeof(arr)/sizeof(arr[0]); printSortedArr(arr, n); return(0); }
linear
nlogn
// C++ Program to search an element // in a sorted and pivoted array #include <bits/stdc++.h> using namespace std; // Standard Binary Search function int binarySearch(int arr[], int low, int high, int key) { if (high < low) return -1; int mid = (low + high) / 2; if (key == arr[mid]) return mid; if (key > arr[mid]) return binarySearch(arr, (mid + 1), high, key); return binarySearch(arr, low, (mid - 1), key); } // Function to get pivot. For array 3, 4, 5, 6, 1, 2 // it returns 3 (index of 6) int findPivot(int arr[], int low, int high) { // Base cases if (high < low) return -1; if (high == low) return low; // low + (high - low)/2; int mid = (low + high) / 2; if (mid < high && arr[mid] > arr[mid + 1]) return mid; if (mid > low && arr[mid] < arr[mid - 1]) return (mid - 1); if (arr[low] >= arr[mid]) return findPivot(arr, low, mid - 1); return findPivot(arr, mid + 1, high); } // Searches an element key in a pivoted // sorted array arr[] of size n int pivotedBinarySearch(int arr[], int n, int key) { int pivot = findPivot(arr, 0, n - 1); // If we didn't find a pivot, // then array is not rotated at all if (pivot == -1) return binarySearch(arr, 0, n - 1, key); // If we found a pivot, then first compare with pivot // and then search in two subarrays around pivot if (arr[pivot] == key) return pivot; if (arr[0] <= key) return binarySearch(arr, 0, pivot - 1, key); return binarySearch(arr, pivot + 1, n - 1, key); } // Driver program to check above functions int main() { // Let us search 3 in below array int arr1[] = { 5, 6, 7, 8, 9, 10, 1, 2, 3 }; int n = sizeof(arr1) / sizeof(arr1[0]); int key = 3; // Function calling cout << "Index of the element is : " << pivotedBinarySearch(arr1, n, key); return 0; }
constant
logn
// Search an element in sorted and rotated // array using single pass of Binary Search #include <bits/stdc++.h> using namespace std; // Returns index of key in arr[l..h] if // key is present, otherwise returns -1 int search(int arr[], int l, int h, int key) { if (l > h) return -1; int mid = (l + h) / 2; if (arr[mid] == key) return mid; /* If arr[l...mid] is sorted */ if (arr[l] <= arr[mid]) { /* As this subarray is sorted, we can quickly check if key lies in half or other half */ if (key >= arr[l] && key <= arr[mid]) return search(arr, l, mid - 1, key); /*If key not lies in first half subarray, Divide other half into two subarrays, such that we can quickly check if key lies in other half */ return search(arr, mid + 1, h, key); } /* If arr[l..mid] first subarray is not sorted, then arr[mid... h] must be sorted subarray */ if (key >= arr[mid] && key <= arr[h]) return search(arr, mid + 1, h, key); return search(arr, l, mid - 1, key); } // Driver program int main() { int arr[] = { 4, 5, 6, 7, 8, 9, 1, 2, 3 }; int n = sizeof(arr) / sizeof(arr[0]); int key = 3; int i = search(arr, 0, n - 1, key); if (i != -1) cout << "Index: " << i << endl; else cout << "Key not found"; } // This code is contributed by Aditya Kumar (adityakumar129)
constant
logn
// C++ code to implement the approach #include <bits/stdc++.h> using namespace std; // This function returns true if arr[0..n-1] // has a pair with sum equals to x. bool pairInSortedRotated(int arr[], int n, int x) { // Find the pivot element int i; for (i = 0; i < n - 1; i++) if (arr[i] > arr[i + 1]) break; // l is now index of smallest element int l = (i + 1) % n; // r is now index of largest element int r = i; // Keep moving either l or r till they meet while (l != r) { // If we find a pair with sum x, // we return true if (arr[l] + arr[r] == x) return true; // If current pair sum is less, // move to the higher sum if (arr[l] + arr[r] < x) l = (l + 1) % n; // Move to the lower sum side else r = (n + r - 1) % n; } return false; } // Driver code int main() { int arr[] = { 11, 15, 6, 8, 9, 10 }; int X = 16; int N = sizeof(arr) / sizeof(arr[0]); // Function call if (pairInSortedRotated(arr, N, X)) cout << "true"; else cout << "false"; return 0; }
constant
linear
// C++ program to find max value of i*arr[i] #include <iostream> using namespace std; // Returns max possible value of i*arr[i] int maxSum(int arr[], int n) { // Find array sum and i*arr[i] with no rotation int arrSum = 0; // Stores sum of arr[i] int currVal = 0; // Stores sum of i*arr[i] for (int i = 0; i < n; i++) { arrSum = arrSum + arr[i]; currVal = currVal + (i * arr[i]); } // Initialize result as 0 rotation sum int maxVal = currVal; // Try all rotations one by one and find // the maximum rotation sum. for (int j = 1; j < n; j++) { currVal = currVal + arrSum - n * arr[n - j]; if (currVal > maxVal) maxVal = currVal; } // Return result return maxVal; } // Driver program int main(void) { int arr[] = { 10, 1, 2, 3, 4, 5, 6, 7, 8, 9 }; int n = sizeof(arr) / sizeof(arr[0]); cout << "\nMax sum is " << maxSum(arr, n); return 0; }
constant
linear
// A Naive C++ program to find maximum sum rotation #include<bits/stdc++.h> using namespace std; // Returns maximum value of i*arr[i] int maxSum(int arr[], int n) { // Initialize result int res = INT_MIN; // Consider rotation beginning with i // for all possible values of i. for (int i=0; i<n; i++) { // Initialize sum of current rotation int curr_sum = 0; // Compute sum of all values. We don't // actually rotate the array, instead of that we compute the // sum by finding indexes when arr[i] is // first element for (int j=0; j<n; j++) { int index = (i+j)%n; curr_sum += j*arr[index]; } // Update result if required res = max(res, curr_sum); } return res; } // Driver code int main() { int arr[] = {8, 3, 1, 2}; int n = sizeof(arr)/sizeof(arr[0]); cout << maxSum(arr, n) << endl; return 0; }
constant
quadratic
// An efficient C++ program to compute // maximum sum of i*arr[i] #include<bits/stdc++.h> using namespace std; int maxSum(int arr[], int n) { // Compute sum of all array elements int cum_sum = 0; for (int i=0; i<n; i++) cum_sum += arr[i]; // Compute sum of i*arr[i] for initial // configuration. int curr_val = 0; for (int i=0; i<n; i++) curr_val += i*arr[i]; // Initialize result int res = curr_val; // Compute values for other iterations for (int i=1; i<n; i++) { // Compute next value using previous // value in O(1) time int next_val = curr_val - (cum_sum - arr[i-1]) + arr[i-1] * (n-1); // Update current value curr_val = next_val; // Update result if required res = max(res, next_val); } return res; } // Driver code int main() { int arr[] = {8, 3, 1, 2}; int n = sizeof(arr)/sizeof(arr[0]); cout << maxSum(arr, n) << endl; return 0; }
constant
linear
// C++ program to find maximum sum of all // rotation of i*arr[i] using pivot. #include <iostream> using namespace std; // fun declaration int maxSum(int arr[], int n); int findPivot(int arr[], int n); // function definition int maxSum(int arr[], int n) { int sum = 0; int i; int pivot = findPivot(arr, n); // difference in pivot and index of // last element of array int diff = n - 1 - pivot; for(i = 0; i < n; i++) { sum = sum + ((i + diff) % n) * arr[i]; } return sum; } // function to find pivot int findPivot(int arr[], int n) { int i; for(i = 0; i < n; i++) { if(arr[i] > arr[(i + 1) % n]) return i; } } // Driver code int main(void) { // rotated input array int arr[] = {8, 13, 1, 2}; int n = sizeof(arr) / sizeof(int); int max = maxSum(arr, n); cout << max; return 0; } // This code is contributed by Shubhamsingh10
constant
linear
// C++ program for the above approach #include <iostream> using namespace std; int* rotateArray(int A[], int start, int end) { while (start < end) { int temp = A[start]; A[start] = A[end]; A[end] = temp; start++; end--; } return A; } void leftRotate(int A[], int a, int k) { // if the value of k ever exceeds the length of the // array int c = k % a; // initializing array D so that we always // have a clone of the original array to rotate int D[a]; for (int i = 0; i < a; i++) D[i] = A[i]; rotateArray(D, 0, c - 1); rotateArray(D, c, a - 1); rotateArray(D, 0, a - 1); // printing the rotated array for (int i = 0; i < a; i++) cout << D[i] << " "; cout << "\n"; } int main() { int A[] = { 1, 3, 5, 7, 9 }; int n = sizeof(A) / sizeof(A[0]); int k = 2; leftRotate(A, n, k); k = 3; leftRotate(A, n, k); k = 4; leftRotate(A, n, k); return 0; } // this code is contributed by aditya942003patil
linear
linear
// CPP implementation of left rotation of // an array K number of times #include <bits/stdc++.h> using namespace std; // Fills temp[] with two copies of arr[] void preprocess(int arr[], int n, int temp[]) { // Store arr[] elements at i and i + n for (int i = 0; i < n; i++) temp[i] = temp[i + n] = arr[i]; } // Function to left rotate an array k times void leftRotate(int arr[], int n, int k, int temp[]) { // Starting position of array after k // rotations in temp[] will be k % n int start = k % n; // Print array after k rotations for (int i = start; i < start + n; i++) cout << temp[i] << " "; cout << endl; } // Driver program int main() { int arr[] = { 1, 3, 5, 7, 9 }; int n = sizeof(arr) / sizeof(arr[0]); int temp[2 * n]; preprocess(arr, n, temp); int k = 2; leftRotate(arr, n, k, temp); k = 3; leftRotate(arr, n, k, temp); k = 4; leftRotate(arr, n, k, temp); return 0; }
linear
linear
// CPP implementation of left rotation of // an array K number of times #include <bits/stdc++.h> using namespace std; // Function to left rotate an array k times void leftRotate(int arr[], int n, int k) { // Print array after k rotations for (int i = k; i < k + n; i++) cout << arr[i % n] << " "; } // Driver program int main() { int arr[] = { 1, 3, 5, 7, 9 }; int n = sizeof(arr) / sizeof(arr[0]); int k = 2; leftRotate(arr, n, k); cout << endl; k = 3; leftRotate(arr, n, k); cout << endl; k = 4; leftRotate(arr, n, k); cout << endl; return 0; }
constant
linear
// C++ code to implement the approach #include <bits/stdc++.h> using namespace std; // Function to find the minimum value int findMin(int arr[], int n) { int min_ele = arr[0]; // Traversing over array to // find minimum element for (int i = 0; i < n; i++) { if (arr[i] < min_ele) { min_ele = arr[i]; } } return min_ele; } // Driver code int main() { int arr[] = { 5, 6, 1, 2, 3, 4 }; int N = sizeof(arr) / sizeof(arr[0]); // Function call cout << findMin(arr, N) << endl; return 0; }
constant
linear
// C++ program to find minimum // element in a sorted and rotated array #include <bits/stdc++.h> using namespace std; int findMin(int arr[], int low, int high) { // This condition is needed to // handle the case when array is not // rotated at all if (high < low) return arr[0]; // If there is only one element left if (high == low) return arr[low]; // Find mid int mid = low + (high - low) / 2; /*(low + high)/2;*/ // Check if element (mid+1) is minimum element. Consider // the cases like {3, 4, 5, 1, 2} if (mid < high && arr[mid + 1] < arr[mid]) return arr[mid + 1]; // Check if mid itself is minimum element if (mid > low && arr[mid] < arr[mid - 1]) return arr[mid]; // Decide whether we need to go to left half or right // half if (arr[high] > arr[mid]) return findMin(arr, low, mid - 1); return findMin(arr, mid + 1, high); } // Driver program to test above functions int main() { int arr[] = { 5, 6, 1, 2, 3, 4 }; int N = sizeof(arr) / sizeof(arr[0]); // Function call cout << "The minimum element is " << findMin(arr, 0, N - 1) << endl; return 0; } // This is code is contributed by rathbhupendra
constant
logn
// C++ program for right rotation of // an array (Reversal Algorithm) #include <bits/stdc++.h> /*Function to reverse arr[] from index start to end*/ void reverseArray(int arr[], int start, int end) { while (start < end) { std::swap(arr[start], arr[end]); start++; end--; } } /* Function to right rotate arr[] of size n by d */ void rightRotate(int arr[], int d, int n) { // if in case d>n,this will give segmentation fault. d=d%n; reverseArray(arr, 0, n-1); reverseArray(arr, 0, d-1); reverseArray(arr, d, n-1); } /* function to print an array */ void printArray(int arr[], int size) { for (int i = 0; i < size; i++) std::cout << arr[i] << " "; } // driver code int main() { int arr[] = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10}; int n = sizeof(arr)/sizeof(arr[0]); int k = 3; rightRotate(arr, k, n); printArray(arr, n); return 0; }
constant
linear
// C++ Program to solve queries on Left and Right // Circular shift on array #include <bits/stdc++.h> using namespace std; // Function to solve query of type 1 x. void querytype1(int* toRotate, int times, int n) { // Decreasing the absolute rotation (*toRotate) = ((*toRotate) - times) % n; } // Function to solve query of type 2 y. void querytype2(int* toRotate, int times, int n) { // Increasing the absolute rotation. (*toRotate) = ((*toRotate) + times) % n; } // Function to solve queries of type 3 l r. void querytype3(int toRotate, int l, int r, int preSum[], int n) { // Finding absolute l and r. l = (l + toRotate + n) % n; r = (r + toRotate + n) % n; // if l is before r. if (l <= r) cout << (preSum[r + 1] - preSum[l]) << endl; // If r is before l. else cout << (preSum[n] + preSum[r + 1] - preSum[l]) << endl; } // Wrapper Function solve all queries. void wrapper(int a[], int n) { int preSum[n + 1]; preSum[0] = 0; // Finding Prefix sum for (int i = 1; i <= n; i++) preSum[i] = preSum[i - 1] + a[i - 1]; int toRotate = 0; // Solving each query querytype1(&toRotate, 3, n); querytype3(toRotate, 0, 2, preSum, n); querytype2(&toRotate, 1, n); querytype3(toRotate, 1, 4, preSum, n); } // Driver Program int main() { int arr[] = { 1, 2, 3, 4, 5 }; int N = sizeof(arr) / sizeof(arr[0]); wrapper(arr, N); return 0; }
linear
linear
// C++ implementation of left rotation of // an array K number of times #include <bits/stdc++.h> using namespace std; // Function to leftRotate array multiple times void leftRotate(int arr[], int n, int k) { /* To get the starting point of rotated array */ int mod = k % n; // Prints the rotated array from start position for (int i = 0; i < n; i++) cout << (arr[(mod + i) % n]) << " "; cout << "\n"; } // Driver Code int main() { int arr[] = { 1, 3, 5, 7, 9 }; int n = sizeof(arr) / sizeof(arr[0]); int k = 2; // Function Call leftRotate(arr, n, k); k = 3; // Function Call leftRotate(arr, n, k); k = 4; // Function Call leftRotate(arr, n, k); return 0; }
constant
linear
#include <bits/stdc++.h> using namespace std; int findElement(vector<int> arr, int ranges[][2], int rotations, int index) { // Track of the rotation number int n1 = 1; // Track of the row index for the ranges[][] array int i = 0; // Initialize the left side of the ranges[][] array int leftRange = 0; // Initialize the right side of the ranges[][] array int rightRange = 0; // Initialize the key variable int key = 0; while (n1 <= rotations) { leftRange = ranges[i][0]; rightRange = ranges[i][1]; key = arr[rightRange]; for (int j = rightRange; j >= leftRange + 1; j--) { arr[j] = arr[j - 1]; } arr[leftRange] = key; n1++; i++; } // Return the element after all the rotations return arr[index]; } int main() { vector<int> arr{ 1, 2, 3, 4, 5 }; // No. of rotations int rotations = 2; // Ranges according to 0-based indexing int ranges[][2] = { { 0, 2 }, { 0, 3 } }; int index = 1; cout << (findElement(arr, ranges, rotations, index)); } // This code is contributed by garg28harsh.
constant
quadratic
// CPP code to rotate an array // and answer the index query #include <bits/stdc++.h> using namespace std; // Function to compute the element at // given index int findElement(int arr[], int ranges[][2], int rotations, int index) { for (int i = rotations - 1; i >= 0; i--) { // Range[left...right] int left = ranges[i][0]; int right = ranges[i][1]; // Rotation will not have any effect if (left <= index && right >= index) { if (index == left) index = right; else index--; } } // Returning new element return arr[index]; } // Driver int main() { int arr[] = { 1, 2, 3, 4, 5 }; // No. of rotations int rotations = 2; // Ranges according to 0-based indexing int ranges[rotations][2] = { { 0, 2 }, { 0, 3 } }; int index = 1; cout << findElement(arr, ranges, rotations, index); return 0; }
constant
constant
// CPP program to split array and move first // part to end. #include <iostream> using namespace std; void splitArr(int arr[], int n, int k) { for (int i = 0; i < k; i++) { // Rotate array by 1. int x = arr[0]; for (int j = 0; j < n - 1; ++j) arr[j] = arr[j + 1]; arr[n - 1] = x; } } // Driver code int main() { int arr[] = { 12, 10, 5, 6, 52, 36 }; int n = sizeof(arr) / sizeof(arr[0]); int position = 2; splitArr(arr, n, position); for (int i = 0; i < n; ++i) cout <<" "<< arr[i]; return 0; } // This code is contributed by shivanisinghss2110
constant
quadratic
// CPP program to split array and move first // part to end. #include <bits/stdc++.h> using namespace std; // Function to split array and // move first part to end void splitArr(int arr[], int length, int rotation) { int tmp[length * 2] = {0}; for(int i = 0; i < length; i++) { tmp[i] = arr[i]; tmp[i + length] = arr[i]; } for(int i = rotation; i < rotation + length; i++) { arr[i - rotation] = tmp[i]; } } // Driver code int main() { int arr[] = { 12, 10, 5, 6, 52, 36 }; int n = sizeof(arr) / sizeof(arr[0]); int position = 2; splitArr(arr, n, position); for (int i = 0; i < n; ++i) printf("%d ", arr[i]); return 0; } // This code is contributed by YashKhandelwal8
linear
linear
// C++ program for above approach #include <iostream> using namespace std; // Function to transform the array void fixArray(int ar[], int n) { int i, j, temp; // Iterate over the array for (i = 0; i < n; i++) { for (j = 0; j < n; j++) { // Check is any ar[j] // exists such that // ar[j] is equal to i if (ar[j] == i) { temp = ar[j]; ar[j] = ar[i]; ar[i] = temp; break; } } } // Iterate over array for (i = 0; i < n; i++) { // If not present if (ar[i] != i) { ar[i] = -1; } } // Print the output cout << "Array after Rearranging" << endl; for (i = 0; i < n; i++) { cout << ar[i] << " "; } } // Driver Code int main() { int n, ar[] = { -1, -1, 6, 1, 9, 3, 2, -1, 4, -1 }; n = sizeof(ar) / sizeof(ar[0]); // Function Call fixArray(ar, n); } // Code BY Tanmay Anand
constant
quadratic
// C++ program for rearrange an // array such that arr[i] = i. #include <bits/stdc++.h> using namespace std; // Function to rearrange an array // such that arr[i] = i. void fixArray(int A[], int len) { for (int i = 0; i < len; i++) { if (A[i] != -1 && A[i] != i) { int x = A[i]; // check if desired place // is not vacate while (A[x] != -1 && A[x] != x) { // store the value from // desired place int y = A[x]; // place the x to its correct // position A[x] = x; // now y will become x, now // search the place for x x = y; } // place the x to its correct // position A[x] = x; // check if while loop hasn't // set the correct value at A[i] if (A[i] != i) { // if not then put -1 at // the vacated place A[i] = -1; } } } } // Driver code int main() { int A[] = { -1, -1, 6, 1, 9, 3, 2, -1, 4, -1 }; int len = sizeof(A) / sizeof(A[0]); // Function Call fixArray(A, len); // Print the output for (int i = 0; i < len; i++) cout << A[i] << " "; } // This code is contributed by Smitha Dinesh Semwal
constant
linear
#include <iostream> #include <unordered_set> using namespace std; void fixArray(int arr[], int n) { // a set unordered_set<int> s; // Enter each element which is not -1 in set for(int i=0; i<n; i++) { if(arr[i] != -1) s.insert(arr[i]); } // Navigate through array, // and put A[i] = i, // if i is present in set for(int i=0; i<n; i++) { // if i(index) is found in hmap if(s.find(i) != s.end()) { arr[i] = i; } // if i not found else { arr[i] = -1; } } } // Driver Code int main() { // Array initialization int arr[] {-1, -1, 6, 1, 9, 3, 2, -1, 4,-1}; int n = sizeof(arr) / sizeof(arr[0]); // Function Call fixArray(arr, n); // Print output for(int i=0; i<n; i++) cout << arr[i] << ' '; return 0; } // this code is contributed by dev chaudhary
linear
linear
// C++ program for rearrange an // array such that arr[i] = i. #include <iostream> using namespace std; void fixArray(int arr[], int n) { int i = 0; while (i < n) { int correct = arr[i]; if (arr[i] != -1 && arr[i] != arr[correct]) { // if array element should be lesser than // size and array element should not be at // its correct position then only swap with // its correct position or index value swap(arr[i], arr[correct]); } else { // if element is at its correct position // just increment i and check for remaining // array elements i++; } } return arr; } // Driver Code int main() { int arr[] = { -1, -1, 6, 1, 9, 3, 2, -1, 4, -1 }; int n = sizeof(arr) / sizeof(arr[0]); // Function Call fixArray(arr, n); // Print output for (int i = 0; i < n; i++) cout << arr[i] << " "; return 0; } // This Code is Contributed by kothavvsaakash
constant
linear
// C++ program to rearrange the array as per the given // condition #include <bits/stdc++.h> using namespace std; // function to rearrange the array void rearrangeArr(int arr[], int n) { // total even positions int evenPos = n / 2; // total odd positions int oddPos = n - evenPos; int tempArr[n]; // copy original array in an auxiliary array for (int i = 0; i < n; i++) tempArr[i] = arr[i]; // sort the auxiliary array sort(tempArr, tempArr + n); int j = oddPos - 1; // fill up odd position in original array for (int i = 0; i < n; i += 2) arr[i] = tempArr[j--]; j = oddPos; // fill up even positions in original array for (int i = 1; i < n; i += 2) arr[i] = tempArr[j++]; // display array for (int i = 0; i < n; i++) cout << arr[i] << " "; } // Driver code int main() { int arr[] = { 1, 2, 3, 4, 5, 6, 7 }; int size = sizeof(arr) / sizeof(arr[0]); rearrangeArr(arr, size); return 0; }
linear
nlogn
#include <bits/stdc++.h> using namespace std; int main(){ int n,i,p,q; int a[]= {1, 2, 1, 4, 5, 6, 8, 8}; n=sizeof(a)/sizeof(a[0]); int b[n]; for(i=0;i<n;i++) b[i]=a[i]; sort(b,b+n); p=0;q=n-1; for(i=n-1;i>=0;i--){ if(i%2!=0){ a[i]=b[q]; q--; } else{ a[i]=b[p]; p++; } } for(i=0;i<n;i++){ cout<<a[i]<<" "; } return 0; }
linear
nlogn
/* C++ program to rearrange positive and negative integers in alternate fashion while keeping the order of positive and negative numbers. */ #include <assert.h> #include <iostream> using namespace std; // Utility function to right rotate all elements between // [outofplace, cur] void rightrotate(int arr[], int n, int outofplace, int cur) { char tmp = arr[cur]; for (int i = cur; i > outofplace; i--) arr[i] = arr[i - 1]; arr[outofplace] = tmp; } void rearrange(int arr[], int n) { int outofplace = -1; for (int index = 0; index < n; index++) { if (outofplace >= 0) { // find the item which must be moved into the // out-of-place entry if out-of-place entry is // positive and current entry is negative OR if // out-of-place entry is negative and current // entry is negative then right rotate // // [...-3, -4, -5, 6...] --> [...6, -3, -4, // -5...] // ^ ^ // | | // outofplace --> outofplace // if (((arr[index] >= 0) && (arr[outofplace] < 0)) || ((arr[index] < 0) && (arr[outofplace] >= 0))) { rightrotate(arr, n, outofplace, index); // the new out-of-place entry is now 2 steps // ahead if (index - outofplace >= 2) outofplace = outofplace + 2; else outofplace = -1; } } // if no entry has been flagged out-of-place if (outofplace == -1) { // check if current entry is out-of-place if (((arr[index] >= 0) && (!(index & 0x01))) || ((arr[index] < 0) && (index & 0x01))) { outofplace = index; } } } } // A utility function to print an array 'arr[]' of size 'n' void printArray(int arr[], int n) { for (int i = 0; i < n; i++) cout << arr[i] << " "; cout << endl; } // Driver code int main() { int arr[] = { -5, -2, 5, 2, 4, 7, 1, 8, 0, -8 }; int n = sizeof(arr) / sizeof(arr[0]); cout << "Given array is \n"; printArray(arr, n); rearrange(arr, n); cout << "Rearranged array is \n"; printArray(arr, n); return 0; }
constant
quadratic
// C++ Program to move all zeros to the end #include <bits/stdc++.h> using namespace std; int main() { int A[] = { 5, 6, 0, 4, 6, 0, 9, 0, 8 }; int n = sizeof(A) / sizeof(A[0]); int j = 0; for (int i = 0; i < n; i++) { if (A[i] != 0) { swap(A[j], A[i]); // Partitioning the array j++; } } for (int i = 0; i < n; i++) { cout << A[i] << " "; // Print the array } return 0; }
constant
linear
# C++ program to shift all zeros # to right most side of array # without affecting order of non-zero # elements # Given list arr = [5, 6, 0, 4, 6, 0, 9, 0, 8] # Storing all non zero values nonZeroValues = [x for x in arr if x != 0] # Storing all zeroes zeroes = [j for j in arr if j == 0] # Updating the answer arr = nonZeroValues + zeroes # Printing the answer print( "array after shifting zeros to right side: " + arr)
constant
linear
// C++ implementation to move all zeroes at the end of array #include <iostream> using namespace std; // function to move all zeroes at the end of array void moveZerosToEnd(int arr[], int n) { // Count of non-zero elements int count = 0; // Traverse the array. If arr[i] is non-zero, then // update the value of arr at index count to arr[i] for (int i = 0; i < n; i++) if (arr[i] != 0) arr[count++] = arr[i]; // Update all elements at index >=count with value 0 for (int i = count; i < n; i++) arr[i] = 0; } // function to print the array elements void printArray(int arr[], int n) { for (int i = 0; i < n; i++) cout << arr[i] << " "; } // Driver program to test above int main() { int arr[] = { 0, 1, 9, 8, 4, 0, 0, 2, 7, 0, 6, 0, 9 }; int n = sizeof(arr) / sizeof(arr[0]); cout << "Original array: "; printArray(arr, n); moveZerosToEnd(arr, n); cout << "\nModified array: "; printArray(arr, n); return 0; }
constant
linear
// C++ program to find minimum swaps required // to club all elements less than or equals // to k together #include <iostream> using namespace std; // Utility function to find minimum swaps // required to club all elements less than // or equals to k together int minSwap(int *arr, int n, int k) { // Find count of elements which are // less than equals to k int count = 0; for (int i = 0; i < n; ++i) if (arr[i] <= k) ++count; // Find unwanted elements in current // window of size 'count' int bad = 0; for (int i = 0; i < count; ++i) if (arr[i] > k) ++bad; // Initialize answer with 'bad' value of // current window int ans = bad; for (int i = 0, j = count; j < n; ++i, ++j) { // Decrement count of previous window if (arr[i] > k) --bad; // Increment count of current window if (arr[j] > k) ++bad; // Update ans if count of 'bad' // is less in current window ans = min(ans, bad); } return ans; } // Driver code int main() { int arr[] = {2, 1, 5, 6, 3}; int n = sizeof(arr) / sizeof(arr[0]); int k = 3; cout << minSwap(arr, n, k) << "\n"; int arr1[] = {2, 7, 9, 5, 8, 7, 4}; n = sizeof(arr1) / sizeof(arr1[0]); k = 5; cout << minSwap(arr1, n, k); return 0; }
constant
linear
#include <bits/stdc++.h> using namespace std; // Function for finding the minimum number of swaps // required to bring all the numbers less // than or equal to k together. int minSwap(int arr[], int n, int k) { // Initially snowBallsize is 0 int snowBallSize = 0; for (int i = 0; i < n; i++) { // Calculating the size of window required if (arr[i] <= k) { snowBallSize++; } } int swap = 0, ans_swaps = INT_MAX; for (int i = 0; i < snowBallSize; i++) { if (arr[i] > k) swap++; } ans_swaps = min(ans_swaps, swap); for (int i = snowBallSize; i < n; i++) { // Checking in every window no. of swaps required // and storing its minimum if (arr[i - snowBallSize] <= k && arr[i] > k) swap++; else if (arr[i - snowBallSize] > k && arr[i] <= k) swap--; ans_swaps = min(ans_swaps, swap); } return ans_swaps; } // Driver's code int main() { int arr1[] = { 2, 7, 9, 5, 8, 7, 4 }; int n = sizeof(arr1) / sizeof(arr1[0]); int k = 5; cout << minSwap(arr1, n, k) << "\n"; return 0; } // This code is contributed by aditya942003patil
constant
linear
// C++ implementation of // the above approach #include <iostream> void printArray(int array[], int length) { std::cout << "["; for(int i = 0; i < length; i++) { std::cout << array[i]; if(i < (length - 1)) std::cout << ", "; else std::cout << "]" << std::endl; } } void reverse(int array[], int start, int end) { while(start < end) { int temp = array[start]; array[start] = array[end]; array[end] = temp; start++; end--; } } // Rearrange the array with all negative integers // on left and positive integers on right // use recursion to split the array with first element // as one half and the rest array as another and then // merge it with head of the array in each step void rearrange(int array[], int start, int end) { // exit condition if(start == end) return; // rearrange the array except the first // element in each recursive call rearrange(array, (start + 1), end); // If the first element of the array is positive, // then right-rotate the array by one place first // and then reverse the merged array. if(array[start] >= 0) { reverse(array, (start + 1), end); reverse(array, start, end); } } // Driver code int main() { int array[] = {-12, -11, -13, -5, -6, 7, 5, 3, 6}; int length = (sizeof(array) / sizeof(array[0])); int countNegative = 0; for(int i = 0; i < length; i++) { if(array[i] < 0) countNegative++; } std::cout << "array: "; printArray(array, length); rearrange(array, 0, (length - 1)); reverse(array, countNegative, (length - 1)); std::cout << "rearranged array: "; printArray(array, length); return 0; }
quadratic
quadratic
// C++ program to print the array in given order #include <bits/stdc++.h> using namespace std; // Function which arrange the array. void rearrangeArray(int arr[], int n) { // Sorting the array elements sort(arr, arr + n); int tempArr[n]; // To store modified array // Adding numbers from sorted array to // new array accordingly int ArrIndex = 0; // Traverse from begin and end simultaneously for (int i = 0, j = n - 1; i <= n / 2 || j > n / 2; i++, j--) { tempArr[ArrIndex] = arr[i]; ArrIndex++; tempArr[ArrIndex] = arr[j]; ArrIndex++; } // Modifying original array for (int i = 0; i < n; i++) arr[i] = tempArr[i]; } // Driver Code int main() { int arr[] = { 5, 8, 1, 4, 2, 9, 3, 7, 6 }; int n = sizeof(arr) / sizeof(arr[0]); rearrangeArray(arr, n); for (int i = 0; i < n; i++) cout << arr[i] << " "; return 0; }
linear
nlogn
// C++ implementation to rearrange the array elements after // modification #include <bits/stdc++.h> using namespace std; // function which pushes all zeros to end of an array. void pushZerosToEnd(int arr[], int n) { // Count of non-zero elements int count = 0; // Traverse the array. If element encountered is // non-zero, then replace the element at index 'count' // with this element for (int i = 0; i < n; i++) if (arr[i] != 0) // here count is incremented arr[count++] = arr[i]; // Now all non-zero elements have been shifted to front // and 'count' is set as index of first 0. Make all // elements 0 from count to end. while (count < n) arr[count++] = 0; } // function to rearrange the array elements after // modification void modifyAndRearrangeArr(int arr[], int n) { // if 'arr[]' contains a single element only if (n == 1) return; // traverse the array for (int i = 0; i < n - 1; i++) { // if true, perform the required modification if ((arr[i] != 0) && (arr[i] == arr[i + 1])) { // double current index value arr[i] = 2 * arr[i]; // put 0 in the next index arr[i + 1] = 0; // increment by 1 so as to move two indexes // ahead during loop iteration i++; } } // push all the zeros at the end of 'arr[]' pushZerosToEnd(arr, n); } // function to print the array elements void printArray(int arr[], int n) { for (int i = 0; i < n; i++) cout << arr[i] << " "; } // Driver program to test above int main() { int arr[] = { 0, 2, 2, 2, 0, 6, 6, 0, 0, 8 }; int n = sizeof(arr) / sizeof(arr[0]); cout << "Original array: "; printArray(arr, n); modifyAndRearrangeArr(arr, n); cout << "\nModified array: "; printArray(arr, n); return 0; }
constant
linear
// C++ program to Rearrange positive and negative // numbers in a array #include <bits/stdc++.h> using namespace std; // A utility function to print an array of size n void printArray(int arr[], int n) { for (int i = 0; i < n; i++) cout<<arr[i]<<" "; } void rotateSubArray(int arr[], int l, int r) { int temp = arr[r]; for (int j = r; j > l - 1; j--) { arr[j] = arr[j - 1]; } arr[l] = temp; } void moveNegative(int arr[], int n) { int last_negative_index = -1; for (int i = 0; i < n; i++) { if (arr[i] < 0) { last_negative_index += 1; int temp = arr[i]; arr[i] = arr[last_negative_index]; arr[last_negative_index] = temp; // Done to manage order too if (i - last_negative_index >= 2) rotateSubArray(arr, last_negative_index + 1, i); } } } // Driver Code int main() { int arr[] = { 5, 5, -3, 4, -8, 0, -7, 3, -9, -3, 9, -2, 1 }; int n = sizeof(arr) / sizeof(arr[0]); moveNegative(arr, n); printArray(arr, n); return 0; } // This code is contributed by Aarti_Rathi
constant
quadratic
// C++ program to Rearrange positive and negative // numbers in a array #include <stdio.h> // A utility function to print an array of size n void printArray(int arr[], int n) { for (int i = 0; i < n; i++) printf("%d ", arr[i]); printf("\n"); } // Function to Rearrange positive and negative // numbers in a array void RearrangePosNeg(int arr[], int n) { int key, j; for (int i = 1; i < n; i++) { key = arr[i]; // if current element is positive // do nothing if (key > 0) continue; /* if current element is negative, shift positive elements of arr[0..i-1], to one position to their right */ j = i - 1; while (j >= 0 && arr[j] > 0) { arr[j + 1] = arr[j]; j = j - 1; } // Put negative element at its right position arr[j + 1] = key; } } /* Driver program to test above functions */ int main() { int arr[] = { -12, 11, -13, -5, 6, -7, 5, -3, -6 }; int n = sizeof(arr) / sizeof(arr[0]); RearrangePosNeg(arr, n); printArray(arr, n); return 0; }
constant
quadratic
// C++ program to Rearrange positive and negative // numbers in a array #include <iostream> using namespace std; /* Function to print an array */ void printArray(int A[], int size) { for (int i = 0; i < size; i++) cout << A[i] << " "; cout << endl; } // Merges two subarrays of arr[]. // First subarray is arr[l..m] // Second subarray is arr[m+1..r] void merge(int arr[], int l, int m, int r) { int i, j, k; int n1 = m - l + 1; int n2 = r - m; /* create temp arrays */ int L[n1], R[n2]; /* Copy data to temp arrays L[] and R[] */ for (i = 0; i < n1; i++) L[i] = arr[l + i]; for (j = 0; j < n2; j++) R[j] = arr[m + 1 + j]; /* Merge the temp arrays back into arr[l..r]*/ i = 0; // Initial index of first subarray j = 0; // Initial index of second subarray k = l; // Initial index of merged subarray // Note the order of appearance of elements should // be maintained - we copy elements of left subarray // first followed by that of right subarray // copy negative elements of left subarray while (i < n1 && L[i] < 0) arr[k++] = L[i++]; // copy negative elements of right subarray while (j < n2 && R[j] < 0) arr[k++] = R[j++]; // copy positive elements of left subarray while (i < n1) arr[k++] = L[i++]; // copy positive elements of right subarray while (j < n2) arr[k++] = R[j++]; } // Function to Rearrange positive and negative // numbers in a array void RearrangePosNeg(int arr[], int l, int r) { if (l < r) { // Same as (l + r)/2, but avoids overflow for // large l and h int m = l + (r - l) / 2; // Sort first and second halves RearrangePosNeg(arr, l, m); RearrangePosNeg(arr, m + 1, r); merge(arr, l, m, r); } } /* Driver program to test above functions */ int main() { int arr[] = { -12, 11, -13, -5, 6, -7, 5, -3, -6 }; int arr_size = sizeof(arr) / sizeof(arr[0]); RearrangePosNeg(arr, 0, arr_size - 1); printArray(arr, arr_size); return 0; }
linear
nlogn
// C++ program to Rearrange positive and negative // numbers in a array #include <bits/stdc++.h> using namespace std; /* Function to print an array */ void printArray(int A[], int size) { for (int i = 0; i < size; i++) cout << A[i] << " "; cout << endl; } /* Function to reverse an array. An array can be reversed in O(n) time and O(1) space. */ void reverse(int arr[], int l, int r) { if (l < r) { swap(arr[l], arr[r]); reverse(arr, ++l, --r); } } // Merges two subarrays of arr[]. // First subarray is arr[l..m] // Second subarray is arr[m+1..r] void merge(int arr[], int l, int m, int r) { int i = l; // Initial index of 1st subarray int j = m + 1; // Initial index of IInd while (i <= m && arr[i] < 0) i++; // arr[i..m] is positive while (j <= r && arr[j] < 0) j++; // arr[j..r] is positive // reverse positive part of // left sub-array (arr[i..m]) reverse(arr, i, m); // reverse negative part of // right sub-array (arr[m+1..j-1]) reverse(arr, m + 1, j - 1); // reverse arr[i..j-1] reverse(arr, i, j - 1); } // Function to Rearrange positive and negative // numbers in a array void RearrangePosNeg(int arr[], int l, int r) { if (l < r) { // Same as (l+r)/2, but avoids overflow for // large l and h int m = l + (r - l) / 2; // Sort first and second halves RearrangePosNeg(arr, l, m); RearrangePosNeg(arr, m + 1, r); merge(arr, l, m, r); } } /* Driver code */ int main() { int arr[] = { -12, 11, -13, -5, 6, -7, 5, -3, -6 }; int arr_size = sizeof(arr) / sizeof(arr[0]); RearrangePosNeg(arr, 0, arr_size - 1); printArray(arr, arr_size); return 0; }
logn
nlogn
#include <bits/stdc++.h> using namespace std; void Rearrange(int arr[], int n) { stable_partition(arr,arr+n,[](int x){return x<0;}); } int main() { int n=4; int arr[n]={-3, 3, -2, 2}; Rearrange( arr, n); for (int i = 0; i < n; i++) cout << arr[i] << " "; cout << endl; }
linear
quadratic
#include <iostream> using namespace std; void rearrangePosNegWithOrder(int *arr, int size) { int i = 0, j = 0; while (j < size) { if (arr[j] >= 0) { j++; } else { for (int k = j; k > i; k--) { int temp = arr[k]; arr[k] = arr[k - 1]; arr[k - 1] = temp; } i++; j++; } } } int main() { int arr[] = { -12, 11, -13, -5, 6, -7, 5, -3, -6 }; int size = *(&arr + 1) - arr; rearrangePosNegWithOrder(arr, size); for (int i : arr) { cout << i; cout << " "; } return 0; }
constant
linear
// C++ program to rearrange an array in minimum // maximum form #include <bits/stdc++.h> using namespace std; // Prints max at first position, min at second position // second max at third position, second min at fourth // position and so on. void rearrange(int arr[], int n) { // Auxiliary array to hold modified array int temp[n]; // Indexes of smallest and largest elements // from remaining array. int small = 0, large = n - 1; // To indicate whether we need to copy remaining // largest or remaining smallest at next position int flag = true; // Store result in temp[] for (int i = 0; i < n; i++) { if (flag) temp[i] = arr[large--]; else temp[i] = arr[small++]; flag = !flag; } // Copy temp[] to arr[] for (int i = 0; i < n; i++) arr[i] = temp[i]; } // Driver code int main() { int arr[] = { 1, 2, 3, 4, 5, 6 }; int n = sizeof(arr) / sizeof(arr[0]); cout << "Original Array\n"; for (int i = 0; i < n; i++) cout << arr[i] << " "; rearrange(arr, n); cout << "\nModified Array\n"; for (int i = 0; i < n; i++) cout << arr[i] << " "; return 0; }
linear
linear
#include <iostream> #include<vector> #include<algorithm> using namespace std; void move(vector<int>& arr){ sort(arr.begin(),arr.end()); } int main() { vector<int> arr = { -1, 2, -3, 4, 5, 6, -7, 8, 9 }; move(arr); for (int e : arr) cout<<e << " "; return 0; } // This code is contributed by repakaeshwaripriya
linear
nlogn
// A C++ program to put all negative // numbers before positive numbers #include <bits/stdc++.h> using namespace std; void rearrange(int arr[], int n) { int j = 0; for (int i = 0; i < n; i++) { if (arr[i] < 0) { if (i != j) swap(arr[i], arr[j]); j++; } } } // A utility function to print an array void printArray(int arr[], int n) { for (int i = 0; i < n; i++) printf("%d ", arr[i]); } // Driver code int main() { int arr[] = { -1, 2, -3, 4, 5, 6, -7, 8, 9 }; int n = sizeof(arr) / sizeof(arr[0]); rearrange(arr, n); printArray(arr, n); return 0; }
constant
linear
// C++ program of the above // approach #include <iostream> using namespace std; // Function to shift all the // negative elements on left side void shiftall(int arr[], int left, int right) { // Loop to iterate over the // array from left to the right while (left<=right) { // Condition to check if the left // and the right elements are // negative if (arr[left] < 0 && arr[right] < 0) left+=1; // Condition to check if the left // pointer element is positive and // the right pointer element is negative else if (arr[left]>0 && arr[right]<0) { int temp=arr[left]; arr[left]=arr[right]; arr[right]=temp; left+=1; right-=1; } // Condition to check if both the // elements are positive else if (arr[left]>0 && arr[right] >0) right-=1; else{ left += 1; right -= 1; } } } // Function to print the array void display(int arr[], int right){ // Loop to iterate over the element // of the given array for (int i=0;i<=right;++i){ cout<<arr[i]<<" "; } cout<<endl; } // Driver Code int main() { int arr[] = {-12, 11, -13, -5, 6, -7, 5, -3, 11}; int arr_size = sizeof(arr) / sizeof(arr[0]); // Function Call shiftall(arr,0,arr_size-1); display(arr,arr_size-1); return 0; } //added by Dhruv Goyal
constant
linear
#include <iostream> using namespace std; // Swap Function. void swap(int &a,int &b){ int temp =a; a=b; b=temp; } // Using Dutch National Flag Algorithm. void reArrange(int arr[],int n){ int low =0,high = n-1; while(low<high){ if(arr[low]<0){ low++; }else if(arr[high]>0){ high--; }else{ swap(arr[low],arr[high]); } } } void displayArray(int arr[],int n){ for(int i=0;i<n;i++){ cout<<arr[i]<<" "; } cout<<endl; } int main() { // Data int arr[] = {1, 2, -4, -5, 2, -7, 3, 2, -6, -8, -9, 3, 2, 1}; int n = sizeof(arr)/sizeof(arr[0]); reArrange(arr,n); displayArray(arr,n); return 0; }
constant
linear
// C++ program to Move All -ve Element At End // Without changing order Of Array Element #include<bits/stdc++.h> using namespace std; // Moves all -ve element to end of array in // same order. void segregateElements(int arr[], int n) { // Create an empty array to store result int temp[n]; // Traversal array and store +ve element in // temp array int j = 0; // index of temp for (int i = 0; i < n ; i++) if (arr[i] >= 0 ) temp[j++] = arr[i]; // If array contains all positive or all negative. if (j == n || j == 0) return; // Store -ve element in temp array for (int i = 0 ; i < n ; i++) if (arr[i] < 0) temp[j++] = arr[i]; // Copy contents of temp[] to arr[] memcpy(arr, temp, sizeof(temp)); } // Driver program int main() { int arr[] = {1 ,-1 ,-3 , -2, 7, 5, 11, 6 }; int n = sizeof(arr)/sizeof(arr[0]); segregateElements(arr, n); for (int i = 0; i < n; i++) cout << arr[i] << " "; return 0; }
linear
linear
// CPP code to rearrange an array such that // even index elements are smaller and odd // index elements are greater than their // next. #include <iostream> using namespace std; void rearrange(int* arr, int n) { for (int i = 0; i < n - 1; i++) { if (i % 2 == 0 && arr[i] > arr[i + 1]) swap(arr[i], arr[i + 1]); if (i % 2 != 0 && arr[i] < arr[i + 1]) swap(arr[i], arr[i + 1]); } } /* Utility that prints out an array in a line */ void printArray(int arr[], int size) { for (int i = 0; i < size; i++) cout << arr[i] << " "; cout << endl; } /* Driver function to test above functions */ int main() { int arr[] = { 6, 4, 2, 1, 8, 3 }; int n = sizeof(arr) / sizeof(arr[0]); cout << "Before rearranging: \n"; printArray(arr, n); rearrange(arr, n); cout << "After rearranging: \n"; printArray(arr, n); return 0; }
constant
linear
// C++ program to rearrange positive and negative // numbers #include <bits/stdc++.h> using namespace std; void rearrange(int a[], int size) { int positive = 0, negative = 1; while (true) { /* Move forward the positive pointer till negative number number not encountered */ while (positive < size && a[positive] >= 0) positive += 2; /* Move forward the negative pointer till positive number number not encountered */ while (negative < size && a[negative] <= 0) negative += 2; // Swap array elements to fix their position. if (positive < size && negative < size) swap(a[positive], a[negative]); /* Break from the while loop when any index exceeds the size of the array */ else break; } } // Driver code int main() { int arr[] = { 1, -3, 5, 6, -3, 6, 7, -4, 9, 10 }; int n = (sizeof(arr) / sizeof(arr[0])); rearrange(arr, n); for (int i = 0; i < n; i++) cout << arr[i] << " "; return 0; }
constant
quadratic
// C++ program to rearrange positive // and negative numbers #include<iostream> using namespace std; // Swap function void swap(int* a, int i , int j) { int temp = a[i]; a[i] = a[j]; a[j] = temp; return ; } // Print array function void printArray(int* a, int n) { for(int i = 0; i < n; i++) cout << a[i] << " "; cout << endl; return ; } // Driver code int main() { int arr[] = { 1, -3, 5, 6, -3, 6, 7, -4, 9, 10 }; int n = sizeof(arr)/sizeof(arr[0]); //before modification printArray(arr, n); for(int i = 0; i < n; i++) { if(arr[i] >= 0 && i % 2 == 1) { // out of order positive element for(int j = i + 1; j < n; j++) { if(arr[j] < 0 && j % 2 == 0) { // find out of order negative // element in remaining array swap(arr, i, j); break ; } } } else if(arr[i] < 0 && i % 2 == 0) { // out of order negative element for(int j = i + 1; j < n; j++) { if(arr[j] >= 0 && j % 2 == 1) { // find out of order positive // element in remaining array swap(arr, i, j); break; } } } } //after modification printArray(arr, n); return 0; } // This code is contributed by AnitAggarwal
constant
quadratic
// C++ program to update every array element with // multiplication of previous and next numbers in array #include<iostream> using namespace std; void modify(int arr[], int n) { // Nothing to do when array size is 1 if (n <= 1) return; // store current value of arr[0] and update it int prev = arr[0]; arr[0] = arr[0] * arr[1]; // Update rest of the array elements for (int i=1; i<n-1; i++) { // Store current value of next interaction int curr = arr[i]; // Update current value using previous value arr[i] = prev * arr[i+1]; // Update previous value prev = curr; } // Update last array element arr[n-1] = prev * arr[n-1]; } // Driver program int main() { int arr[] = {2, 3, 4, 5, 6}; int n = sizeof(arr)/sizeof(arr[0]); modify(arr, n); for (int i=0; i<n; i++) cout << arr[i] << " "; return 0; }
constant
linear
// C++ Program to shuffle a given array #include<bits/stdc++.h> #include <stdlib.h> #include <time.h> using namespace std; // A utility function to swap to integers void swap (int *a, int *b) { int temp = *a; *a = *b; *b = temp; } // A utility function to print an array void printArray (int arr[], int n) { for (int i = 0; i < n; i++) cout << arr[i] << " "; cout << "\n"; } // A function to generate a random // permutation of arr[] void randomize (int arr[], int n) { // Use a different seed value so that // we don't get same result each time // we run this program srand (time(NULL)); // Start from the last element and swap // one by one. We don't need to run for // the first element that's why i > 0 for (int i = n - 1; i > 0; i--) { // Pick a random index from 0 to i int j = rand() % (i + 1); // Swap arr[i] with the element // at random index swap(&arr[i], &arr[j]); } } // Driver Code int main() { int arr[] = {1, 2, 3, 4, 5, 6, 7, 8}; int n = sizeof(arr) / sizeof(arr[0]); randomize (arr, n); printArray(arr, n); return 0; } // This code is contributed by // rathbhupendra
constant
linear
// C++ Implementation of the above approach #include <iostream> using namespace std; void arrayEvenAndOdd(int arr[], int n) { int a[n], index = 0; for (int i = 0; i < n; i++) { if (arr[i] % 2 == 0) { a[index] = arr[i]; index++; } } for (int i = 0; i < n; i++) { if (arr[i] % 2 != 0) { a[index] = arr[i]; index++; } } for (int i = 0; i < n; i++) { cout << a[i] << " "; } cout << endl; } // Driver code int main() { int arr[] = { 1, 3, 2, 4, 7, 6, 9, 10 }; int n = sizeof(arr) / sizeof(int); // Function call arrayEvenAndOdd(arr, n); return 0; }
linear
linear
// CPP code to segregate even odd // numbers in an array #include <bits/stdc++.h> using namespace std; // Function to segregate even odd numbers void arrayEvenAndOdd(int arr[], int n) { int i = -1, j = 0; int t; while (j != n) { if (arr[j] % 2 == 0) { i++; // Swapping even and odd numbers swap(arr[i], arr[j]); } j++; } // Printing segregated array for (int i = 0; i < n; i++) cout << arr[i] << " "; } // Driver code int main() { int arr[] = { 1, 3, 2, 4, 7, 6, 9, 10 }; int n = sizeof(arr) / sizeof(int); arrayEvenAndOdd(arr, n); return 0; }
constant
linear
// C++ program of above implementation #include <bits/stdc++.h> using namespace std; // Standard partition process of QuickSort(). // It considers the last element as pivot and // oves all smaller element to left of it // and greater elements to right int partition(int* arr, int l, int r) { int x = arr[r], i = l; for (int j = l; j <= r - 1; j++) { if (arr[j] <= x) { swap(arr[i], arr[j]); i++; } } swap(arr[i], arr[r]); return i; } int randomPartition(int* arr, int l, int r) { int n = r - l + 1; int pivot = (rand() % 100 + 1) % n; swap(arr[l + pivot], arr[r]); return partition(arr, l, r); } // This function returns k'th smallest // element in arr[l..r] using // QuickSort based method. ASSUMPTION: // ALL ELEMENTS IN ARR[] ARE DISTINCT int kthSmallest(int* arr, int l, int r, int k) { // If k is smaller than number // of elements in array if (k > 0 && k <= r - l + 1) { // Partition the array around last // element and get position of pivot // element in sorted array int pos = randomPartition(arr, l, r); // If position is same as k if (pos - l == k - 1) { return arr[pos]; } // If position is more, recur // for left subarray if (pos - l > k - 1) { return kthSmallest(arr, l, pos - 1, k); } // Else recur for right subarray return kthSmallest(arr, pos + 1, r, k - pos + l - 1); } // If k is more than number of // elements in array return INT_MAX; } // Driver Code int main() { int arr[] = { 12, 3, 5, 7, 4, 19, 26 }; int n = sizeof(arr) / sizeof(arr[0]), k = 3; cout << "K'th smallest element is " << kthSmallest(arr, 0, n - 1, k); }
constant
nlogn
// STL based C++ program to find k-th smallest // element. #include <bits/stdc++.h> using namespace std; int kthSmallest(int arr[], int n, int k) { // Insert all elements into the set set<int> s; for (int i = 0; i < n; i++) s.insert(arr[i]); // Traverse set and print k-th element auto it = s.begin(); for (int i = 0; i < k - 1; i++) it++; return *it; } int main() { int arr[] = { 12, 3, 5, 7, 3, 19 }; int n = sizeof(arr) / sizeof(arr[0]), k = 2; cout << "K'th smallest element is " << kthSmallest(arr, n, k); return 0; }
linear
nlogn
#include <iostream> using namespace std; // Swap function to interchange // the value of variables x and y int swap(int& x, int& y) { int temp = x; x = y; y = temp; } // Min Heap Class // arr holds reference to an integer // array size indicate the number of // elements in Min Heap class MinHeap { int size; int* arr; public: // Constructor to initialize the size and arr MinHeap(int size, int input[]); // Min Heapify function, that assumes that // 2*i+1 and 2*i+2 are min heap and fix the // heap property for i. void heapify(int i); // Build the min heap, by calling heapify // for all non-leaf nodes. void buildHeap(); }; // Constructor to initialize data // members and creating mean heap MinHeap::MinHeap(int size, int input[]) { // Initializing arr and size this->size = size; this->arr = input; // Building the Min Heap buildHeap(); } // Min Heapify function, that assumes // 2*i+1 and 2*i+2 are min heap and // fix min heap property for i void MinHeap::heapify(int i) { // If Leaf Node, Simply return if (i >= size / 2) return; // variable to store the smallest element // index out of i, 2*i+1 and 2*i+2 int smallest; // Index of left node int left = 2 * i + 1; // Index of right node int right = 2 * i + 2; // Select minimum from left node and // current node i, and store the minimum // index in smallest variable smallest = arr[left] < arr[i] ? left : i; // If right child exist, compare and // update the smallest variable if (right < size) smallest = arr[right] < arr[smallest] ? right : smallest; // If Node i violates the min heap // property, swap current node i with // smallest to fix the min-heap property // and recursively call heapify for node smallest. if (smallest != i) { swap(arr[i], arr[smallest]); heapify(smallest); } } // Build Min Heap void MinHeap::buildHeap() { // Calling Heapify for all non leaf nodes for (int i = size / 2 - 1; i >= 0; i--) { heapify(i); } } void FirstKelements(int arr[],int size,int k){ // Creating Min Heap for given // array with only k elements MinHeap* m = new MinHeap(k, arr); // Loop For each element in array // after the kth element for (int i = k; i < size; i++) { // if current element is smaller // than minimum element, do nothing // and continue to next element if (arr[0] > arr[i]) continue; // Otherwise Change minimum element to // current element, and call heapify to // restore the heap property else { arr[0] = arr[i]; m->heapify(0); } } // Now min heap contains k maximum // elements, Iterate and print for (int i = 0; i < k; i++) { cout << arr[i] << " "; } } // Driver Program int main() { int arr[] = { 11, 3, 2, 1, 15, 5, 4, 45, 88, 96, 50, 45 }; int size = sizeof(arr) / sizeof(arr[0]); // Size of Min Heap int k = 3; FirstKelements(arr,size,k); return 0; } // This code is contributed by Ankur Goel
linear
nlogn
#include <bits/stdc++.h> using namespace std; // picks up last element between start and end int findPivot(int a[], int start, int end) { // Selecting the pivot element int pivot = a[end]; // Initially partition-index will be at starting int pIndex = start; for (int i = start; i < end; i++) { // If an element is lesser than pivot, swap it. if (a[i] <= pivot) { swap(a[i], a[pIndex]); // Incrementing pIndex for further swapping. pIndex++; } } // Lastly swapping or the correct position of pivot swap(a[pIndex], a[end]); return pIndex; } // THIS PART OF CODE IS CONTRIBUTED BY - rjrachit // Picks up random pivot element between start and end int findRandomPivot(int arr[], int start, int end) { int n = end - start + 1; // Selecting the random pivot index int pivotInd = random() % n; swap(arr[end], arr[start + pivotInd]); int pivot = arr[end]; // initialising pivoting point to start index pivotInd = start; for (int i = start; i < end; i++) { // If an element is lesser than pivot, swap it. if (arr[i] <= pivot) { swap(arr[i], arr[pivotInd]); // Incrementing pivotIndex for further swapping. pivotInd++; } } // Lastly swapping or the correct position of pivot swap(arr[pivotInd], arr[end]); return pivotInd; } // THIS PART OF CODE IS CONTRIBUTED BY - rjrachit void SmallestLargest(int a[], int low, int high, int k, int n) { if (low == high) return; else { int pivotIndex = findRandomPivot(a, low, high); if (k == pivotIndex) { cout << k << " smallest elements are : "; for (int i = 0; i < pivotIndex; i++) cout << a[i] << " "; cout << endl; cout << k << " largest elements are : "; for (int i = (n - pivotIndex); i < n; i++) cout << a[i] << " "; } else if (k < pivotIndex) SmallestLargest(a, low, pivotIndex - 1, k, n); else if (k > pivotIndex) SmallestLargest(a, pivotIndex + 1, high, k, n); } } // Driver Code int main() { int a[] = { 11, 3, 2, 1, 15, 5, 4, 45, 88, 96, 50, 45 }; int n = sizeof(a) / sizeof(a[0]); int low = 0; int high = n - 1; // Lets assume k is 3 int k = 3; // Function Call SmallestLargest(a, low, high, k, n); return 0; } // This code is contributed by Sania Kumari Gupta
constant
nlogn
// C++ code for k largest/ smallest elements in an array #include <bits/stdc++.h> using namespace std; // Function to find k largest array element void kLargest(vector<int>& v, int N, int K) { // Implementation using // a Priority Queue priority_queue<int, vector<int>, greater<int> >pq; for (int i = 0; i < N; ++i) { // Insert elements into // the priority queue pq.push(v[i]); // If size of the priority // queue exceeds k if (pq.size() > K) { pq.pop(); } } // Print the k largest element while(!pq.empty()) { cout << pq.top() <<" "; pq.pop(); } cout<<endl; } // Function to find k smallest array element void kSmalest(vector<int>& v, int N, int K) { // Implementation using // a Priority Queue priority_queue<int> pq; for (int i = 0; i < N; ++i) { // Insert elements into // the priority queue pq.push(v[i]); // If size of the priority // queue exceeds k if (pq.size() > K) { pq.pop(); } } // Print the k smallest element while(!pq.empty()) { cout << pq.top() <<" "; pq.pop(); } } // driver program int main() { // Given array vector<int> arr = { 11, 3, 2, 1, 15, 5, 4, 45, 88, 96, 50, 45 }; // Size of array int n = arr.size(); int k = 3; cout<<k<<" largest elements are : "; kLargest(arr, n, k); cout<<k<<" smallest elements are : "; kSmalest(arr, n, k); } // This code is contributed by Pushpesh Raj.
linear
nlogn
#include <bits/stdc++.h> using namespace std; struct Node{ int data; struct Node *left; struct Node *right; }; class Tree{ public: Node *root = NULL; void addNode(int data){ Node *newNode = new Node(); newNode->data = data; if (!root){ root = newNode; } else{ Node *cur = root; while (cur){ if (cur->data > data){ if (cur->left){ cur = cur->left; } else{ cur->left = newNode; return; } } else{ if (cur->right){ cur = cur->right; } else{ cur->right = newNode; return; } } } } } void printGreatest(int &K, vector<int> /, Node* node){ if (!node || K == 0) return; printGreatest(K, sol, node->right); if (K <= 0) return; sol.push_back(node->data); K--; printGreatest(K, sol, node->left); } }; class Solution{ public: vector<int> kLargest(int arr[], int n, int k) { vector<int> sol; Tree tree = Tree(); for (int i = 0; i < n; i++){ tree.addNode(arr[i]); } tree.printGreatest(k, sol, tree.root); return sol; } }; int main() { int n = 5, k = 2; int arr[] = {12, 5, 787, 1, 23}; Solution ob; auto ans = ob.kLargest(arr, n, k); cout << "Top " << k << " Elements: "; for (auto x : ans) { cout << x << " "; } cout << "\n"; return 0; }
linear
nlogn
End of preview. Expand in Data Studio

Dataset Card for TASTY C++ and Python Codes with Complexities

This is a dataset of code snippets with their complexities, both space and time.

As part of this initial release, we cover C++ and Python.

This data was collected as part of our work on the paper called TASTY, published at the ICLR DL4Code workshop, a few years back.

We scraped the data from the popular coding website called GeeksForGeeks (GFG). It is under the CCBY license.

We published this paper before the advent of ChatGPT, so this is not recent by any means and things on the GFG website might have changed since we scraped the data. There was also a lot of manual work that went into correcting the scraped data and putting it into the format that we needed it to be, so some of the complexities might not be exactly what you see on the GFG website.

There is work being undertaken on the next version of the paper, where we plan to expand to dataset to several more languages and a lot more examples. Probably 10x more samples for 4-5 more languages. There will be a fundamental change in the tone of the work as well since TASTY was published before the ChatGPT, LLMs were not as popular then.

Dataset Details

There are more than 1000 but less than 2000 codes and their space + time complexity.

Dataset Sources

Uses

  • Classification of space and time complexity
  • Eventual Auto Regressive prediciton of the same
  • Cross Language Transfer

Direct Use

Read the paper above for direct uses.

Downloads last month
38