Datasets:
Tasks:
Token Classification
Modalities:
Text
Sub-tasks:
named-entity-recognition
Languages:
English
Size:
10K - 100K
ArXiv:
annotations_creators: | |
- expert-generated | |
language: | |
- en | |
language_creators: | |
- found | |
license: [] | |
multilinguality: | |
- monolingual | |
pretty_name: CrossNER is a cross-domain dataset for named entity recognition | |
size_categories: | |
- 10K<n<100K | |
source_datasets: | |
- extended|conll2003 | |
tags: | |
- cross domain | |
- ai | |
- news | |
- music | |
- literature | |
- politics | |
- science | |
task_categories: | |
- token-classification | |
task_ids: | |
- named-entity-recognition | |
dataset_info: | |
- config_name: ai | |
features: | |
- name: id | |
dtype: string | |
- name: tokens | |
sequence: string | |
- name: ner_tags | |
sequence: | |
class_label: | |
names: | |
'0': O | |
'1': B-academicjournal | |
'2': I-academicjournal | |
'3': B-album | |
'4': I-album | |
'5': B-algorithm | |
'6': I-algorithm | |
'7': B-astronomicalobject | |
'8': I-astronomicalobject | |
'9': B-award | |
'10': I-award | |
'11': B-band | |
'12': I-band | |
'13': B-book | |
'14': I-book | |
'15': B-chemicalcompound | |
'16': I-chemicalcompound | |
'17': B-chemicalelement | |
'18': I-chemicalelement | |
'19': B-conference | |
'20': I-conference | |
'21': B-country | |
'22': I-country | |
'23': B-discipline | |
'24': I-discipline | |
'25': B-election | |
'26': I-election | |
'27': B-enzyme | |
'28': I-enzyme | |
'29': B-event | |
'30': I-event | |
'31': B-field | |
'32': I-field | |
'33': B-literarygenre | |
'34': I-literarygenre | |
'35': B-location | |
'36': I-location | |
'37': B-magazine | |
'38': I-magazine | |
'39': B-metrics | |
'40': I-metrics | |
'41': B-misc | |
'42': I-misc | |
'43': B-musicalartist | |
'44': I-musicalartist | |
'45': B-musicalinstrument | |
'46': I-musicalinstrument | |
'47': B-musicgenre | |
'48': I-musicgenre | |
'49': B-organisation | |
'50': I-organisation | |
'51': B-person | |
'52': I-person | |
'53': B-poem | |
'54': I-poem | |
'55': B-politicalparty | |
'56': I-politicalparty | |
'57': B-politician | |
'58': I-politician | |
'59': B-product | |
'60': I-product | |
'61': B-programlang | |
'62': I-programlang | |
'63': B-protein | |
'64': I-protein | |
'65': B-researcher | |
'66': I-researcher | |
'67': B-scientist | |
'68': I-scientist | |
'69': B-song | |
'70': I-song | |
'71': B-task | |
'72': I-task | |
'73': B-theory | |
'74': I-theory | |
'75': B-university | |
'76': I-university | |
'77': B-writer | |
'78': I-writer | |
splits: | |
- name: train | |
num_bytes: 65080 | |
num_examples: 100 | |
- name: validation | |
num_bytes: 189453 | |
num_examples: 350 | |
- name: test | |
num_bytes: 225691 | |
num_examples: 431 | |
download_size: 289173 | |
dataset_size: 480224 | |
- config_name: literature | |
features: | |
- name: id | |
dtype: string | |
- name: tokens | |
sequence: string | |
- name: ner_tags | |
sequence: | |
class_label: | |
names: | |
'0': O | |
'1': B-academicjournal | |
'2': I-academicjournal | |
'3': B-album | |
'4': I-album | |
'5': B-algorithm | |
'6': I-algorithm | |
'7': B-astronomicalobject | |
'8': I-astronomicalobject | |
'9': B-award | |
'10': I-award | |
'11': B-band | |
'12': I-band | |
'13': B-book | |
'14': I-book | |
'15': B-chemicalcompound | |
'16': I-chemicalcompound | |
'17': B-chemicalelement | |
'18': I-chemicalelement | |
'19': B-conference | |
'20': I-conference | |
'21': B-country | |
'22': I-country | |
'23': B-discipline | |
'24': I-discipline | |
'25': B-election | |
'26': I-election | |
'27': B-enzyme | |
'28': I-enzyme | |
'29': B-event | |
'30': I-event | |
'31': B-field | |
'32': I-field | |
'33': B-literarygenre | |
'34': I-literarygenre | |
'35': B-location | |
'36': I-location | |
'37': B-magazine | |
'38': I-magazine | |
'39': B-metrics | |
'40': I-metrics | |
'41': B-misc | |
'42': I-misc | |
'43': B-musicalartist | |
'44': I-musicalartist | |
'45': B-musicalinstrument | |
'46': I-musicalinstrument | |
'47': B-musicgenre | |
'48': I-musicgenre | |
'49': B-organisation | |
'50': I-organisation | |
'51': B-person | |
'52': I-person | |
'53': B-poem | |
'54': I-poem | |
'55': B-politicalparty | |
'56': I-politicalparty | |
'57': B-politician | |
'58': I-politician | |
'59': B-product | |
'60': I-product | |
'61': B-programlang | |
'62': I-programlang | |
'63': B-protein | |
'64': I-protein | |
'65': B-researcher | |
'66': I-researcher | |
'67': B-scientist | |
'68': I-scientist | |
'69': B-song | |
'70': I-song | |
'71': B-task | |
'72': I-task | |
'73': B-theory | |
'74': I-theory | |
'75': B-university | |
'76': I-university | |
'77': B-writer | |
'78': I-writer | |
splits: | |
- name: train | |
num_bytes: 63181 | |
num_examples: 100 | |
- name: validation | |
num_bytes: 244076 | |
num_examples: 400 | |
- name: test | |
num_bytes: 270092 | |
num_examples: 416 | |
download_size: 334380 | |
dataset_size: 577349 | |
- config_name: music | |
features: | |
- name: id | |
dtype: string | |
- name: tokens | |
sequence: string | |
- name: ner_tags | |
sequence: | |
class_label: | |
names: | |
'0': O | |
'1': B-academicjournal | |
'2': I-academicjournal | |
'3': B-album | |
'4': I-album | |
'5': B-algorithm | |
'6': I-algorithm | |
'7': B-astronomicalobject | |
'8': I-astronomicalobject | |
'9': B-award | |
'10': I-award | |
'11': B-band | |
'12': I-band | |
'13': B-book | |
'14': I-book | |
'15': B-chemicalcompound | |
'16': I-chemicalcompound | |
'17': B-chemicalelement | |
'18': I-chemicalelement | |
'19': B-conference | |
'20': I-conference | |
'21': B-country | |
'22': I-country | |
'23': B-discipline | |
'24': I-discipline | |
'25': B-election | |
'26': I-election | |
'27': B-enzyme | |
'28': I-enzyme | |
'29': B-event | |
'30': I-event | |
'31': B-field | |
'32': I-field | |
'33': B-literarygenre | |
'34': I-literarygenre | |
'35': B-location | |
'36': I-location | |
'37': B-magazine | |
'38': I-magazine | |
'39': B-metrics | |
'40': I-metrics | |
'41': B-misc | |
'42': I-misc | |
'43': B-musicalartist | |
'44': I-musicalartist | |
'45': B-musicalinstrument | |
'46': I-musicalinstrument | |
'47': B-musicgenre | |
'48': I-musicgenre | |
'49': B-organisation | |
'50': I-organisation | |
'51': B-person | |
'52': I-person | |
'53': B-poem | |
'54': I-poem | |
'55': B-politicalparty | |
'56': I-politicalparty | |
'57': B-politician | |
'58': I-politician | |
'59': B-product | |
'60': I-product | |
'61': B-programlang | |
'62': I-programlang | |
'63': B-protein | |
'64': I-protein | |
'65': B-researcher | |
'66': I-researcher | |
'67': B-scientist | |
'68': I-scientist | |
'69': B-song | |
'70': I-song | |
'71': B-task | |
'72': I-task | |
'73': B-theory | |
'74': I-theory | |
'75': B-university | |
'76': I-university | |
'77': B-writer | |
'78': I-writer | |
splits: | |
- name: train | |
num_bytes: 65077 | |
num_examples: 100 | |
- name: validation | |
num_bytes: 259702 | |
num_examples: 380 | |
- name: test | |
num_bytes: 327195 | |
num_examples: 465 | |
download_size: 414065 | |
dataset_size: 651974 | |
- config_name: conll2003 | |
features: | |
- name: id | |
dtype: string | |
- name: tokens | |
sequence: string | |
- name: ner_tags | |
sequence: | |
class_label: | |
names: | |
'0': O | |
'1': B-academicjournal | |
'2': I-academicjournal | |
'3': B-album | |
'4': I-album | |
'5': B-algorithm | |
'6': I-algorithm | |
'7': B-astronomicalobject | |
'8': I-astronomicalobject | |
'9': B-award | |
'10': I-award | |
'11': B-band | |
'12': I-band | |
'13': B-book | |
'14': I-book | |
'15': B-chemicalcompound | |
'16': I-chemicalcompound | |
'17': B-chemicalelement | |
'18': I-chemicalelement | |
'19': B-conference | |
'20': I-conference | |
'21': B-country | |
'22': I-country | |
'23': B-discipline | |
'24': I-discipline | |
'25': B-election | |
'26': I-election | |
'27': B-enzyme | |
'28': I-enzyme | |
'29': B-event | |
'30': I-event | |
'31': B-field | |
'32': I-field | |
'33': B-literarygenre | |
'34': I-literarygenre | |
'35': B-location | |
'36': I-location | |
'37': B-magazine | |
'38': I-magazine | |
'39': B-metrics | |
'40': I-metrics | |
'41': B-misc | |
'42': I-misc | |
'43': B-musicalartist | |
'44': I-musicalartist | |
'45': B-musicalinstrument | |
'46': I-musicalinstrument | |
'47': B-musicgenre | |
'48': I-musicgenre | |
'49': B-organisation | |
'50': I-organisation | |
'51': B-person | |
'52': I-person | |
'53': B-poem | |
'54': I-poem | |
'55': B-politicalparty | |
'56': I-politicalparty | |
'57': B-politician | |
'58': I-politician | |
'59': B-product | |
'60': I-product | |
'61': B-programlang | |
'62': I-programlang | |
'63': B-protein | |
'64': I-protein | |
'65': B-researcher | |
'66': I-researcher | |
'67': B-scientist | |
'68': I-scientist | |
'69': B-song | |
'70': I-song | |
'71': B-task | |
'72': I-task | |
'73': B-theory | |
'74': I-theory | |
'75': B-university | |
'76': I-university | |
'77': B-writer | |
'78': I-writer | |
splits: | |
- name: train | |
num_bytes: 3561081 | |
num_examples: 14041 | |
- name: validation | |
num_bytes: 891431 | |
num_examples: 3250 | |
- name: test | |
num_bytes: 811470 | |
num_examples: 3453 | |
download_size: 2694794 | |
dataset_size: 5263982 | |
- config_name: politics | |
features: | |
- name: id | |
dtype: string | |
- name: tokens | |
sequence: string | |
- name: ner_tags | |
sequence: | |
class_label: | |
names: | |
'0': O | |
'1': B-academicjournal | |
'2': I-academicjournal | |
'3': B-album | |
'4': I-album | |
'5': B-algorithm | |
'6': I-algorithm | |
'7': B-astronomicalobject | |
'8': I-astronomicalobject | |
'9': B-award | |
'10': I-award | |
'11': B-band | |
'12': I-band | |
'13': B-book | |
'14': I-book | |
'15': B-chemicalcompound | |
'16': I-chemicalcompound | |
'17': B-chemicalelement | |
'18': I-chemicalelement | |
'19': B-conference | |
'20': I-conference | |
'21': B-country | |
'22': I-country | |
'23': B-discipline | |
'24': I-discipline | |
'25': B-election | |
'26': I-election | |
'27': B-enzyme | |
'28': I-enzyme | |
'29': B-event | |
'30': I-event | |
'31': B-field | |
'32': I-field | |
'33': B-literarygenre | |
'34': I-literarygenre | |
'35': B-location | |
'36': I-location | |
'37': B-magazine | |
'38': I-magazine | |
'39': B-metrics | |
'40': I-metrics | |
'41': B-misc | |
'42': I-misc | |
'43': B-musicalartist | |
'44': I-musicalartist | |
'45': B-musicalinstrument | |
'46': I-musicalinstrument | |
'47': B-musicgenre | |
'48': I-musicgenre | |
'49': B-organisation | |
'50': I-organisation | |
'51': B-person | |
'52': I-person | |
'53': B-poem | |
'54': I-poem | |
'55': B-politicalparty | |
'56': I-politicalparty | |
'57': B-politician | |
'58': I-politician | |
'59': B-product | |
'60': I-product | |
'61': B-programlang | |
'62': I-programlang | |
'63': B-protein | |
'64': I-protein | |
'65': B-researcher | |
'66': I-researcher | |
'67': B-scientist | |
'68': I-scientist | |
'69': B-song | |
'70': I-song | |
'71': B-task | |
'72': I-task | |
'73': B-theory | |
'74': I-theory | |
'75': B-university | |
'76': I-university | |
'77': B-writer | |
'78': I-writer | |
splits: | |
- name: train | |
num_bytes: 143507 | |
num_examples: 200 | |
- name: validation | |
num_bytes: 422760 | |
num_examples: 541 | |
- name: test | |
num_bytes: 472690 | |
num_examples: 651 | |
download_size: 724168 | |
dataset_size: 1038957 | |
- config_name: science | |
features: | |
- name: id | |
dtype: string | |
- name: tokens | |
sequence: string | |
- name: ner_tags | |
sequence: | |
class_label: | |
names: | |
'0': O | |
'1': B-academicjournal | |
'2': I-academicjournal | |
'3': B-album | |
'4': I-album | |
'5': B-algorithm | |
'6': I-algorithm | |
'7': B-astronomicalobject | |
'8': I-astronomicalobject | |
'9': B-award | |
'10': I-award | |
'11': B-band | |
'12': I-band | |
'13': B-book | |
'14': I-book | |
'15': B-chemicalcompound | |
'16': I-chemicalcompound | |
'17': B-chemicalelement | |
'18': I-chemicalelement | |
'19': B-conference | |
'20': I-conference | |
'21': B-country | |
'22': I-country | |
'23': B-discipline | |
'24': I-discipline | |
'25': B-election | |
'26': I-election | |
'27': B-enzyme | |
'28': I-enzyme | |
'29': B-event | |
'30': I-event | |
'31': B-field | |
'32': I-field | |
'33': B-literarygenre | |
'34': I-literarygenre | |
'35': B-location | |
'36': I-location | |
'37': B-magazine | |
'38': I-magazine | |
'39': B-metrics | |
'40': I-metrics | |
'41': B-misc | |
'42': I-misc | |
'43': B-musicalartist | |
'44': I-musicalartist | |
'45': B-musicalinstrument | |
'46': I-musicalinstrument | |
'47': B-musicgenre | |
'48': I-musicgenre | |
'49': B-organisation | |
'50': I-organisation | |
'51': B-person | |
'52': I-person | |
'53': B-poem | |
'54': I-poem | |
'55': B-politicalparty | |
'56': I-politicalparty | |
'57': B-politician | |
'58': I-politician | |
'59': B-product | |
'60': I-product | |
'61': B-programlang | |
'62': I-programlang | |
'63': B-protein | |
'64': I-protein | |
'65': B-researcher | |
'66': I-researcher | |
'67': B-scientist | |
'68': I-scientist | |
'69': B-song | |
'70': I-song | |
'71': B-task | |
'72': I-task | |
'73': B-theory | |
'74': I-theory | |
'75': B-university | |
'76': I-university | |
'77': B-writer | |
'78': I-writer | |
splits: | |
- name: train | |
num_bytes: 121928 | |
num_examples: 200 | |
- name: validation | |
num_bytes: 276118 | |
num_examples: 450 | |
- name: test | |
num_bytes: 334181 | |
num_examples: 543 | |
download_size: 485191 | |
dataset_size: 732227 | |
# Dataset Card for CrossRE | |
## Table of Contents | |
- [Table of Contents](#table-of-contents) | |
- [Dataset Description](#dataset-description) | |
- [Dataset Summary](#dataset-summary) | |
- [Supported Tasks and Leaderboards](#supported-tasks-and-leaderboards) | |
- [Languages](#languages) | |
- [Dataset Structure](#dataset-structure) | |
- [Data Instances](#data-instances) | |
- [Data Fields](#data-fields) | |
- [Data Splits](#data-splits) | |
- [Dataset Creation](#dataset-creation) | |
- [Curation Rationale](#curation-rationale) | |
- [Source Data](#source-data) | |
- [Annotations](#annotations) | |
- [Personal and Sensitive Information](#personal-and-sensitive-information) | |
- [Considerations for Using the Data](#considerations-for-using-the-data) | |
- [Social Impact of Dataset](#social-impact-of-dataset) | |
- [Discussion of Biases](#discussion-of-biases) | |
- [Other Known Limitations](#other-known-limitations) | |
- [Additional Information](#additional-information) | |
- [Dataset Curators](#dataset-curators) | |
- [Licensing Information](#licensing-information) | |
- [Citation Information](#citation-information) | |
- [Contributions](#contributions) | |
## Dataset Description | |
- **Repository:** [CrossNER](https://github.com/zliucr/CrossNER) | |
- **Paper:** [CrossNER: Evaluating Cross-Domain Named Entity Recognition](https://arxiv.org/abs/2012.04373) | |
### Dataset Summary | |
CrossNER is a fully-labeled collected of named entity recognition (NER) data spanning over five diverse domains | |
(Politics, Natural Science, Music, Literature, and Artificial Intelligence) with specialized entity categories for | |
different domains. Additionally, CrossNER also includes unlabeled domain-related corpora for the corresponding five | |
domains. | |
For details, see the paper: | |
[CrossNER: Evaluating Cross-Domain Named Entity Recognition](https://arxiv.org/abs/2012.04373) | |
### Supported Tasks and Leaderboards | |
[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) | |
### Languages | |
The language data in CrossNER is in English (BCP-47 en) | |
## Dataset Structure | |
### Data Instances | |
#### conll2003 | |
- **Size of downloaded dataset files:** 2.69 MB | |
- **Size of the generated dataset:** 5.26 MB | |
An example of 'train' looks as follows: | |
```json | |
{ | |
"id": "0", | |
"tokens": ["EU", "rejects", "German", "call", "to", "boycott", "British", "lamb", "."], | |
"ner_tags": [49, 0, 41, 0, 0, 0, 41, 0, 0] | |
} | |
``` | |
#### politics | |
- **Size of downloaded dataset files:** 0.72 MB | |
- **Size of the generated dataset:** 1.04 MB | |
An example of 'train' looks as follows: | |
```json | |
{ | |
"id": "0", | |
"tokens": ["Parties", "with", "mainly", "Eurosceptic", "views", "are", "the", "ruling", "United", "Russia", ",", "and", "opposition", "parties", "the", "Communist", "Party", "of", "the", "Russian", "Federation", "and", "Liberal", "Democratic", "Party", "of", "Russia", "."], | |
"ner_tags": [0, 0, 0, 0, 0, 0, 0, 0, 55, 56, 0, 0, 0, 0, 0, 55, 56, 56, 56, 56, 56, 0, 55, 56, 56, 56, 56, 0] | |
} | |
``` | |
#### science | |
- **Size of downloaded dataset files:** 0.49 MB | |
- **Size of the generated dataset:** 0.73 MB | |
An example of 'train' looks as follows: | |
```json | |
{ | |
"id": "0", | |
"tokens": ["They", "may", "also", "use", "Adenosine", "triphosphate", ",", "Nitric", "oxide", ",", "and", "ROS", "for", "signaling", "in", "the", "same", "ways", "that", "animals", "do", "."], | |
"ner_tags": [0, 0, 0, 0, 15, 16, 0, 15, 16, 0, 0, 15, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] | |
} | |
``` | |
#### music | |
- **Size of downloaded dataset files:** 0.41 MB | |
- **Size of the generated dataset:** 0.65 MB | |
An example of 'train' looks as follows: | |
```json | |
{ | |
"id": "0", | |
"tokens": ["In", "2003", ",", "the", "Stade", "de", "France", "was", "the", "primary", "site", "of", "the", "2003", "World", "Championships", "in", "Athletics", "."], | |
"ner_tags": [0, 0, 0, 0, 35, 36, 36, 0, 0, 0, 0, 0, 0, 29, 30, 30, 30, 30, 0] | |
} | |
``` | |
#### literature | |
- **Size of downloaded dataset files:** 0.33 MB | |
- **Size of the generated dataset:** 0.58 MB | |
An example of 'train' looks as follows: | |
```json | |
{ | |
"id": "0", | |
"tokens": ["In", "1351", ",", "during", "the", "reign", "of", "Emperor", "Toghon", "Temür", "of", "the", "Yuan", "dynasty", ",", "93rd-generation", "descendant", "Kong", "Huan", "(", "孔浣", ")", "'", "s", "2nd", "son", "Kong", "Shao", "(", "孔昭", ")", "moved", "from", "China", "to", "Korea", "during", "the", "Goryeo", ",", "and", "was", "received", "courteously", "by", "Princess", "Noguk", "(", "the", "Mongolian-born", "wife", "of", "the", "future", "king", "Gongmin", ")", "."], | |
"ner_tags": [0, 0, 0, 0, 0, 0, 0, 51, 52, 52, 0, 0, 21, 22, 0, 0, 0, 77, 78, 0, 77, 0, 0, 0, 0, 0, 77, 78, 0, 77, 0, 0, 0, 21, 0, 21, 0, 0, 41, 0, 0, 0, 0, 0, 0, 51, 52, 0, 0, 41, 0, 0, 0, 0, 0, 51, 0, 0] | |
} | |
``` | |
#### ai | |
- **Size of downloaded dataset files:** 0.29 MB | |
- **Size of the generated dataset:** 0.48 MB | |
An example of 'train' looks as follows: | |
```json | |
{ | |
"id": "0", | |
"tokens": ["Popular", "approaches", "of", "opinion-based", "recommender", "system", "utilize", "various", "techniques", "including", "text", "mining", ",", "information", "retrieval", ",", "sentiment", "analysis", "(", "see", "also", "Multimodal", "sentiment", "analysis", ")", "and", "deep", "learning", "X.Y.", "Feng", ",", "H.", "Zhang", ",", "Y.J.", "Ren", ",", "P.H.", "Shang", ",", "Y.", "Zhu", ",", "Y.C.", "Liang", ",", "R.C.", "Guan", ",", "D.", "Xu", ",", "(", "2019", ")", ",", ",", "21", "(", "5", ")", ":", "e12957", "."], | |
"ner_tags": [0, 0, 0, 59, 60, 60, 0, 0, 0, 0, 31, 32, 0, 71, 72, 0, 71, 72, 0, 0, 0, 71, 72, 72, 0, 0, 31, 32, 65, 66, 0, 65, 66, 0, 65, 66, 0, 65, 66, 0, 65, 66, 0, 65, 66, 0, 65, 66, 0, 65, 66, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] | |
} | |
``` | |
### Data Fields | |
The data fields are the same among all splits. | |
- `id`: the instance id of this sentence, a `string` feature. | |
- `tokens`: the list of tokens of this sentence, a `list` of `string` features. | |
- `ner_tags`: the list of entity tags, a `list` of classification labels. | |
```json | |
{"O": 0, "B-academicjournal": 1, "I-academicjournal": 2, "B-album": 3, "I-album": 4, "B-algorithm": 5, "I-algorithm": 6, "B-astronomicalobject": 7, "I-astronomicalobject": 8, "B-award": 9, "I-award": 10, "B-band": 11, "I-band": 12, "B-book": 13, "I-book": 14, "B-chemicalcompound": 15, "I-chemicalcompound": 16, "B-chemicalelement": 17, "I-chemicalelement": 18, "B-conference": 19, "I-conference": 20, "B-country": 21, "I-country": 22, "B-discipline": 23, "I-discipline": 24, "B-election": 25, "I-election": 26, "B-enzyme": 27, "I-enzyme": 28, "B-event": 29, "I-event": 30, "B-field": 31, "I-field": 32, "B-literarygenre": 33, "I-literarygenre": 34, "B-location": 35, "I-location": 36, "B-magazine": 37, "I-magazine": 38, "B-metrics": 39, "I-metrics": 40, "B-misc": 41, "I-misc": 42, "B-musicalartist": 43, "I-musicalartist": 44, "B-musicalinstrument": 45, "I-musicalinstrument": 46, "B-musicgenre": 47, "I-musicgenre": 48, "B-organisation": 49, "I-organisation": 50, "B-person": 51, "I-person": 52, "B-poem": 53, "I-poem": 54, "B-politicalparty": 55, "I-politicalparty": 56, "B-politician": 57, "I-politician": 58, "B-product": 59, "I-product": 60, "B-programlang": 61, "I-programlang": 62, "B-protein": 63, "I-protein": 64, "B-researcher": 65, "I-researcher": 66, "B-scientist": 67, "I-scientist": 68, "B-song": 69, "I-song": 70, "B-task": 71, "I-task": 72, "B-theory": 73, "I-theory": 74, "B-university": 75, "I-university": 76, "B-writer": 77, "I-writer": 78} | |
``` | |
### Data Splits | |
| | Train | Dev | Test | | |
|--------------|--------|-------|-------| | |
| conll2003 | 14,987 | 3,466 | 3,684 | | |
| politics | 200 | 541 | 651 | | |
| science | 200 | 450 | 543 | | |
| music | 100 | 380 | 456 | | |
| literature | 100 | 400 | 416 | | |
| ai | 100 | 350 | 431 | | |
## Dataset Creation | |
### Curation Rationale | |
[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) | |
### Source Data | |
#### Initial Data Collection and Normalization | |
[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) | |
#### Who are the source language producers? | |
[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) | |
### Annotations | |
#### Annotation process | |
[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) | |
#### Who are the annotators? | |
[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) | |
### Personal and Sensitive Information | |
[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) | |
## Considerations for Using the Data | |
### Social Impact of Dataset | |
[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) | |
### Discussion of Biases | |
[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) | |
### Other Known Limitations | |
[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) | |
## Additional Information | |
### Dataset Curators | |
[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) | |
### Licensing Information | |
[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) | |
### Citation Information | |
``` | |
@article{liu2020crossner, | |
title={CrossNER: Evaluating Cross-Domain Named Entity Recognition}, | |
author={Zihan Liu and Yan Xu and Tiezheng Yu and Wenliang Dai and Ziwei Ji and Samuel Cahyawijaya and Andrea Madotto and Pascale Fung}, | |
year={2020}, | |
eprint={2012.04373}, | |
archivePrefix={arXiv}, | |
primaryClass={cs.CL} | |
} | |
``` | |
### Contributions | |
Thanks to [@phucdev](https://github.com/phucdev) for adding this dataset. |