massive / README.md
Samoed's picture
Upload dataset
df37e1e verified
metadata
dataset_info:
  - config_name: default
    features:
      - name: utterance
        dtype: string
      - name: label
        dtype: int64
    splits:
      - name: train
        num_bytes: 540734
        num_examples: 11492
      - name: validation
        num_bytes: 95032
        num_examples: 2031
      - name: test
        num_bytes: 138211
        num_examples: 2968
    download_size: 378530
    dataset_size: 773977
  - config_name: intents
    features:
      - name: id
        dtype: int64
      - name: name
        dtype: string
      - name: tags
        sequence: 'null'
      - name: regexp_full_match
        sequence: 'null'
      - name: regexp_partial_match
        sequence: 'null'
      - name: description
        dtype: 'null'
    splits:
      - name: intents
        num_bytes: 2187
        num_examples: 58
    download_size: 3921
    dataset_size: 2187
  - config_name: intentsqwen3-32b
    features:
      - name: id
        dtype: int64
      - name: name
        dtype: string
      - name: tags
        sequence: 'null'
      - name: regex_full_match
        sequence: 'null'
      - name: regex_partial_match
        sequence: 'null'
      - name: description
        dtype: string
    splits:
      - name: intents
        num_bytes: 5694
        num_examples: 58
    download_size: 6157
    dataset_size: 5694
configs:
  - config_name: default
    data_files:
      - split: train
        path: data/train-*
      - split: validation
        path: data/validation-*
      - split: test
        path: data/test-*
  - config_name: intents
    data_files:
      - split: intents
        path: intents/intents-*
  - config_name: intentsqwen3-32b
    data_files:
      - split: intents
        path: intentsqwen3-32b/intents-*
task_categories:
  - text-classification
language:
  - en

massive

This is a text classification dataset. It is intended for machine learning research and experimentation.

This dataset is obtained via formatting another publicly available data to be compatible with our AutoIntent Library.

Usage

It is intended to be used with our AutoIntent Library:

from autointent import Dataset

massive = Dataset.from_hub("AutoIntent/massive")

Source

This dataset is taken from mteb/amazon_massive_intent and formatted with our AutoIntent Library:

from datasets import Dataset as HFDataset
from datasets import load_dataset

from autointent import Dataset
from autointent.schemas import Intent, Sample


def extract_intents_info(split: HFDataset) -> tuple[list[Intent], dict[str, int]]:
    """Extract metadata."""
    intent_names = sorted(split.unique("label"))
    intent_names.remove("cooking_query")
    intent_names.remove("audio_volume_other")
    n_classes = len(intent_names)
    name_to_id = dict(zip(intent_names, range(n_classes), strict=False))
    intents_data = [Intent(id=i, name=intent_names[i]) for i in range(n_classes)]
    return intents_data, name_to_id


def convert_massive(split: HFDataset, name_to_id: dict[str, int]) -> list[Sample]:
    """Extract utterances and labels."""
    return [Sample(utterance=s["text"], label=name_to_id[s["label"]]) for s in split if s["label"] in name_to_id]


if __name__ == "__main__":
    massive = load_dataset("mteb/amazon_massive_intent", "en")
    intents, name_to_id = extract_intents_info(massive["train"])
    train_samples = convert_massive(massive["train"], name_to_id)
    test_samples = convert_massive(massive["test"], name_to_id)
    validation_samples = convert_massive(massive["validation"], name_to_id)
    dataset = Dataset.from_dict(
        {"intents": intents, "train": train_samples, "test": test_samples, "validation": validation_samples}
    )