|
--- |
|
dataset_info: |
|
- config_name: default |
|
features: |
|
- name: utterance |
|
dtype: string |
|
- name: label |
|
dtype: int64 |
|
splits: |
|
- name: train |
|
num_bytes: 540734 |
|
num_examples: 11492 |
|
- name: validation |
|
num_bytes: 95032 |
|
num_examples: 2031 |
|
- name: test |
|
num_bytes: 138211 |
|
num_examples: 2968 |
|
download_size: 378530 |
|
dataset_size: 773977 |
|
- config_name: intents |
|
features: |
|
- name: id |
|
dtype: int64 |
|
- name: name |
|
dtype: string |
|
- name: tags |
|
sequence: 'null' |
|
- name: regexp_full_match |
|
sequence: 'null' |
|
- name: regexp_partial_match |
|
sequence: 'null' |
|
- name: description |
|
dtype: 'null' |
|
splits: |
|
- name: intents |
|
num_bytes: 2187 |
|
num_examples: 58 |
|
download_size: 3921 |
|
dataset_size: 2187 |
|
- config_name: intentsqwen3-32b |
|
features: |
|
- name: id |
|
dtype: int64 |
|
- name: name |
|
dtype: string |
|
- name: tags |
|
sequence: 'null' |
|
- name: regex_full_match |
|
sequence: 'null' |
|
- name: regex_partial_match |
|
sequence: 'null' |
|
- name: description |
|
dtype: string |
|
splits: |
|
- name: intents |
|
num_bytes: 5694 |
|
num_examples: 58 |
|
download_size: 6157 |
|
dataset_size: 5694 |
|
configs: |
|
- config_name: default |
|
data_files: |
|
- split: train |
|
path: data/train-* |
|
- split: validation |
|
path: data/validation-* |
|
- split: test |
|
path: data/test-* |
|
- config_name: intents |
|
data_files: |
|
- split: intents |
|
path: intents/intents-* |
|
- config_name: intentsqwen3-32b |
|
data_files: |
|
- split: intents |
|
path: intentsqwen3-32b/intents-* |
|
task_categories: |
|
- text-classification |
|
language: |
|
- en |
|
--- |
|
|
|
# massive |
|
|
|
This is a text classification dataset. It is intended for machine learning research and experimentation. |
|
|
|
This dataset is obtained via formatting another publicly available data to be compatible with our [AutoIntent Library](https://deeppavlov.github.io/AutoIntent/index.html). |
|
|
|
## Usage |
|
|
|
It is intended to be used with our [AutoIntent Library](https://deeppavlov.github.io/AutoIntent/index.html): |
|
|
|
```python |
|
from autointent import Dataset |
|
|
|
massive = Dataset.from_hub("AutoIntent/massive") |
|
``` |
|
|
|
## Source |
|
|
|
This dataset is taken from `mteb/amazon_massive_intent` and formatted with our [AutoIntent Library](https://deeppavlov.github.io/AutoIntent/index.html): |
|
|
|
```python |
|
from datasets import Dataset as HFDataset |
|
from datasets import load_dataset |
|
|
|
from autointent import Dataset |
|
from autointent.schemas import Intent, Sample |
|
|
|
|
|
def extract_intents_info(split: HFDataset) -> tuple[list[Intent], dict[str, int]]: |
|
"""Extract metadata.""" |
|
intent_names = sorted(split.unique("label")) |
|
intent_names.remove("cooking_query") |
|
intent_names.remove("audio_volume_other") |
|
n_classes = len(intent_names) |
|
name_to_id = dict(zip(intent_names, range(n_classes), strict=False)) |
|
intents_data = [Intent(id=i, name=intent_names[i]) for i in range(n_classes)] |
|
return intents_data, name_to_id |
|
|
|
|
|
def convert_massive(split: HFDataset, name_to_id: dict[str, int]) -> list[Sample]: |
|
"""Extract utterances and labels.""" |
|
return [Sample(utterance=s["text"], label=name_to_id[s["label"]]) for s in split if s["label"] in name_to_id] |
|
|
|
|
|
if __name__ == "__main__": |
|
massive = load_dataset("mteb/amazon_massive_intent", "en") |
|
intents, name_to_id = extract_intents_info(massive["train"]) |
|
train_samples = convert_massive(massive["train"], name_to_id) |
|
test_samples = convert_massive(massive["test"], name_to_id) |
|
validation_samples = convert_massive(massive["validation"], name_to_id) |
|
dataset = Dataset.from_dict( |
|
{"intents": intents, "train": train_samples, "test": test_samples, "validation": validation_samples} |
|
) |
|
``` |