FreshRetailNet-50K / README.md
JarvisGu's picture
Update README.md
2acbe01 verified
metadata
language:
  - en
license: cc-by-4.0
task_categories:
  - time-series-forecasting
tags:
  - fresh-retail
  - censored-demand
  - hourly-stock-status
size_categories:
  - 1M<n<10M
pretty_name: FreshRetailNet-50K
configs:
  - config_name: default
    data_files:
      - split: train
        path: data/train.parquet
      - split: eval
        path: data/eval.parquet

FreshRetailNet-50K

Dataset Overview

FreshRetailNet-50K is the first large-scale benchmark for censored demand estimation in the fresh retail domain, incorporating approximately 20% organically occurring stockout data. It comprises 50,000 store-product 90-day time series of detailed hourly sales data from 898 stores in 18 major cities, encompassing 863 perishable SKUs with meticulous stockout event annotations. The hourly stock status records unique to this dataset, combined with rich contextual covariates including promotional discounts, precipitation, and other temporal features, enable innovative research beyond existing solutions.

  • Technical Report - Discover the methodology and technical details behind FreshRetailNet-50K.
  • Github Repo - Access the complete pipeline used to train and evaluate.

This dataset is ready for commercial/non-commercial use.

Data Fields

Field Type Description
city_id int64 The encoded city id
store_id int64 The encoded store id
management_group_id int64 The encoded management group id
first_category_id int64 The encoded first category id
second_category_id int64 The encoded second category id
third_category_id int64 The encoded third category id
product_id int64 The encoded product id
dt string The date
sale_amount float64 The daily sales amount after global normalization (Multiplied by a specific coefficient)
hours_sale Sequence(float64) The hourly sales amount after global normalization (Multiplied by a specific coefficient)
stock_hour6_22_cnt int32 The number of out-of-stock hours between 6:00 and 22:00
hours_stock_status Sequence(int32) The hourly out-of-stock status
discount float64 The discount rate (1.0 means no discount, 0.9 means 10% off)
holiday_flag int32 Holiday indicator
activity_flag int32 Activity indicator
precpt float64 The total precipitation
avg_temperature float64 The average temperature
avg_humidity float64 The average humidity
avg_wind_level float64 The average wind force

Hierarchical structure

  • warehouse: city_id > store_id
  • product category: management_group_id > first_category_id > second_category_id > third_category_id > product_id

How to use it

You can load the dataset with the following lines of code.

from datasets import load_dataset
dataset = load_dataset("Dingdong-Inc/FreshRetailNet-50K")
print(dataset)
DatasetDict({
    train: Dataset({
        features: ['city_id', 'store_id', 'management_group_id', 'first_category_id', 'second_category_id', 'third_category_id', 'product_id', 'dt', 'sale_amount', 'hours_sale', 'stock_hour6_22_cnt', 'hours_stock_status', 'discount', 'holiday_flag', 'activity_flag', 'precpt', 'avg_temperature', 'avg_humidity', 'avg_wind_level'],
        num_rows: 4500000
    })
    eval: Dataset({
        features: ['city_id', 'store_id', 'management_group_id', 'first_category_id', 'second_category_id', 'third_category_id', 'product_id', 'dt', 'sale_amount', 'hours_sale', 'stock_hour6_22_cnt', 'hours_stock_status', 'discount', 'holiday_flag', 'activity_flag', 'precpt', 'avg_temperature', 'avg_humidity', 'avg_wind_level'],
        num_rows: 350000
    })
})

License/Terms of Use

This dataset is licensed under the Creative Commons Attribution 4.0 International License (CC BY 4.0) available at https://creativecommons.org/licenses/by/4.0/legalcode.

Data Developer: Dingdong-Inc

Use Case:

Developers researching latent demand recovery and demand forecasting techniques.

Release Date:

05/08/2025

Data Version

1.0 (05/08/2025)

Intended use

The FreshRetailNet-50K Dataset is intended to be freely used by the community to continue to improve latent demand recovery and demand forecasting techniques. However, for each dataset an user elects to use, the user is responsible for checking if the dataset license is fit for the intended purpose.

Citation

If you find the data useful, please cite:

@article{2025freshretailnet-50k,
      title={FreshRetailNet-50K: A Stockout-Annotated Censored Demand Dataset for Latent Demand Recovery and Forecasting in Fresh Retail},
      author={Yangyang Wang, Jiawei Gu, Li Long, Xin Li, Li Shen, Zhouyu Fu, Xiangjun Zhou, Xu Jiang},
      year={2025},
      eprint={2505.16319},
      archivePrefix={arXiv},
      primaryClass={cs.LG},
      url={https://arxiv.org/abs/2505.16319},
}