Datasets:
Tasks:
Token Classification
Formats:
parquet
Sub-tasks:
named-entity-recognition
Languages:
Arabic
Size:
10K - 100K
License:
Spoken-Arabic Named-Entity Dataset (Levantine NER v1.0)
A curated corpus of Levantine-Arabic sentences annotated for Named Entities, plus parallel dual-annotator files for assessing annotation noise.
Ideal for fine-tuning Arabic-BERT–style models on noisy, spoken data and testing cross-register robustness.
1 Corpus snapshot
| statistic | value |
|---|---|
| Sentences (unique set) | 23 422 |
| Sentences incl. 2nd annotator (A + B) | 29 228 |
| Tokens (approx.) | ~290 k |
| Annotated entity spans | 17 589 |
| Avg. entities ∕ sentence | 0.75 |
| Annotators | Arzy · Rawan · Reem · Sabil · Wiam · Amir |
| Rounds | round1 – round5 (natural speech) + round6 (synthetic news/MSA) |
| File format | JSON Lines (UTF-8) |
Label inventory
| label | description | count |
|---|---|---|
GPE |
geopolitical entity | 4 601 |
PER |
person | 3 628 |
ORG |
organisation | 1 426 |
MISC |
misc. named item | 1 301 |
FAC |
facility | 947 |
TIMEX |
temporal expression | 926 |
DUC |
product/brand | 711 |
EVE |
event | 487 |
LOC |
(non-GPE) location | 467 |
ANG |
angle/measure | 322 |
WOA |
work of art | 292 |
TTL |
title/honorific | 227 |
2 File list
| file | lines | purpose |
|---|---|---|
unique_sentences.jsonl |
23 422 | canonical training/dev/test pool (one Levantine sentence per line) |
iaa_A.jsonl |
5 806 | first annotator in each inter-annotator pair (not in unique) |
iaa_B.jsonl |
5 806 | second annotator for the same sentences (aligned 1-to-1 with iaa_A) |
sentences.parquet / spans.parquet |
52 274 / 17 589 | columnar versions for quick Pandas analysis (optional) |
Record schema (unique_sentences.jsonl)
{
"doc_id" : 137,
"doc_name" : "22صدى-الصوت22",
"sent_id" : 11,
"orig_ID" : "29891",
"round" : "round3", // round1-5 natural, round6 synthetic
"annotator" : "Rawan",
"text" : "جيب جوال أو أي اشي ضو هيك",
"source_type": "social_videos",
"spans": [
{ "start": 4, "end": 8, "label": "DUC" }
],
// only for round6
"msa": {
"text" : "<parallel MSA sentence>",
"spans" : [{ "start": 5, "end": 16, "label": "LOC" }]
},
// provenance (optional)
"url" : "https://…",
"date" : "2019-05-02 18:30:44"
}